Category Archives: Aqua

Ice motion in the Great Lakes

GOES-16 "Red" Visible (0.64 µm) images, with hourly plots of surface wind barbs in cyan and wind gusts (kn0ts) in red (click to play Animated GIF)

GOES-16 “Red” Visible (0.64 µm) images, with hourly plots of surface wind barbs in cyan and wind gusts (knots) in red (click to play Animated GIF | MP4 also available)

GOES-16 “Red” Visible (0.64 µm) images showed ice motion in the western Great Lakes (above) and the central/eastern Great Lakes (below) on 14 February 2018. A flow of southwesterly winds at the surface was helping to move the lake ice toward the northeast. With increasing winds and a return of warmer air, the ice coverage of Lake Superior, Lake Michigan and Lake Huron had decreased slightly from their seasonal peaks a few days earlier — while the ice coverage for Lake Erie remained neared its seasonal peak. The total ice coverage for the Great Lakes as a whole was 57.9% on this day.

GOES-16

GOES-16 “Red” Visible (0.64 µm) images, with hourly plots of surface wind barbs in cyan and wind gusts (knots) in red (click to play Animated GIF | MP4 also available)

Closer views of southern Lake Michigan and southern Lake Huron are shown below. In Lake Huron, small ice floes can be seen breaking away from the land fast ice.

GOES-16

GOES-16 “Red” Visible (0.64 µm) images, with hourly plots of surface wind barbs in cyan and wind gusts (knots) in red (click to play Animated GIF | MP4 also available)

GOES-16

GOES-16 “Red” Visible (0.64 µm) images, with hourly plots of surface wind barbs in cyan and wind gusts (knots) in red (click to play Animated GIF | MP4 also available)

250-meter resolution Terra and Aqua MODIS True-color Red-Green-Blue (RGB) images from the MODIS Today site (below) provided more detailed views of the ice floes in southern Lake Michigan, southern Lake Huron and western Lake Erie. The Aqua satellite overpass was about 90 minutes later than that of Terra.

Terra and Aqua MODIS True-color RGB images of southern Lake Michigan [click to enlarge]

Terra and Aqua MODIS True-color RGB images of southern Lake Michigan [click to enlarge]

Terra and Aqua MODIS True-color RGB images of southern Lake Huron [click to enlarge]

Terra and Aqua MODIS True-color RGB images of southern Lake Huron [click to enlarge]

Terra and Aqua MODIS True-color RGB images of western Lake Erie [click to enlarge]

Terra and Aqua MODIS True-color RGB images of western Lake Erie [click to enlarge]

Large hail in Argentina

GOES-16

GOES-16 “Red” Visible (0.64 µm, top) and “Clean” Infrared Window (10.3 µm, bottom) images, with hourly surface reports (metric units) for Córdoba, Argentina [click to play animated GIF — MP4 also available]

GOES-16 (GOES-East) “Red” Visible (0.64 µm) and “Clean” Infrared Window (10.3 µm) images (above) showed the development of severe thunderstorms which produced very large hail in Córdoba, Argentina on 08 February 2018. Distinct above-anvil plumes were evident on the Visible imagery, with pulses of overshooting tops exhibiting Infrared brightness temperatures in the -70 to -80ºC range (black to white enhancement). The hail reportedly began around 1930 UTC or 4:30 PM local time.

The above-anvil plumes could also be seen in GOES-16 Near-Infrared “Snow/Ice” (1.61 µm) images (below).

GOES-16 Near-Infrared

GOES-16 Near-Infrared “Snow/Ice” (1.61 µm) images, with hourly surface reports (metric units) for Córdoba, Argentina [click to play animated GIF — MP4 also available]

An Aqua MODIS True-color Red-Green-Blue (RGB) image viewed using RealEarth (below) showed the thunderstorm just west of Córdoba around 1850 UTC.

Aqua MODIS True-color RGB image [click to enlarge]

Aqua MODIS True-color RGB image [click to enlarge]

According to the Worldview site, the coldest Aqua MODIS cloud-top infrared brightness temperature at that time was -78ºC (below).

Aqua MODIS True-color and Infrared Window (11.0 µm) images [click to enlarge]

Aqua MODIS True-color and Infrared Window (11.0 µm) images [click to enlarge]

A time series plot of surface observations at Córdoba (below) showed the warm temperatures and high dew points prior to the arrival of the thunderstorms; there were a number of hail reports between 19 UTC and 02 UTC (4 PM to 11 PM local time).

Time series of surface observations at Córdoba, Argentina [click to enlarge]

Time series of surface observations at Córdoba, Argentina [click to enlarge]

Pyrocumulonimbus cloud in Argentina

GOES-16 Visible (0.64 µm, top), Shortwave Infrared (3.9 µm, center) and Infrared Window (10.3 µm) images [click to play animation]

GOES-16 Visible (0.64 µm, top), Shortwave Infrared (3.9 µm, center) and Infrared Window (10.3 µm, bottom) images [click to play animation]

A large cluster of fires burning in central Argentina became hot enough to generate a brief pyrocumulonimbus (pyroCb) cloud on 29 January 2018; according to media reports, on that day there were winds of 55 km/hour (34 mph) and temperatures of 37 ºC (98.6 ºF) in the vicinity of these La Pampa province fires. GOES-16 (GOES-East) “Red” Visible (0.64 µm), Shortwave Infrared (3.9 µm) and “Clean” Infrared Window (10.3 µm) images (above; also available as an MP4 animation) showed the smoke plumes, fire thermal anomalies or “hot spots” (red pixels) and the cold cloud-top infrared brightness temperatures, respectively. The minimum 10.3 µm temperature was -32.6 ºC at 1745 UTC. Note the relatively warm (darker gray) appearance on the 3.9 µm image — this is a characteristic signature of pyroCb clouds tops, driven by the aerosol-induced shift toward smaller ice particles (which act as more efficient reflectors of incoming solar radiation).

An Aqua MODIS True-color Red-Green-Blue (RGB) image viewed using RealEarth (below) showed the dense lower-tropospheric smoke drifting southward and southeastward from the fire source region, as well as the narrow upper-tropospheric anvil of the pyroCb cloud. Suomi NPP VIIRS fire detection locations are plotted as red dots on the final zoomed-in image. The actual time of the Aqua satellite pass over Argentina was 1812 UTC.

Aqua MODIS True-color RGB image, with Suomi NPP VIIRS fire detection locations [click to enlarge]

Aqua MODIS True-color RGB image, with Suomi NPP VIIRS fire detection locations [click to enlarge]

According to Worldview the coldest MODIS Infrared Window (11.0 µm) cloud-top  brightness temperature was -41.2 ºC, thus surpassing the -40 ºC threshold that is generally accepted to classify it as a pyroCb. This is believed to be the first confirmed pyroCb event in South America.

Approximately 120 km north-northeast of the pyroCb cloud, rawinsonde data from Santa Rosa, Argentina (below) indicated that the -41 ºC cloud-top temperature corresponded to altitudes in the 10.8 to 11.6 km range. The air was very dry at that level in the upper troposphere, contributing to the rapid dissipation of the pyroCb cloud material as seen in GOES-16 imagery.

Plots of rawinsonde data from Santa Rosa, Argentina [click to enlarge]

Plots of rawinsonde data from Santa Rosa, Argentina [click to enlarge]

48-hour HYSPLIT forward trajectories originating from the center of the pyroCb cloud at altitudes of 7, 9 and 11 km (below) suggested that a rapid transport of smoke over the adjacent offshore waters of the Atlantic Ocean was likely at those levels.

HYSPLIT forward trajectories originating at altitudes of 7, 9 and 11 km [click to enlarge]

HYSPLIT forward trajectories originating at altitudes of 7, 9 and 11 km [click to enlarge]

On 30 January, Suomi NPP OMPS Aerosol Index values (below; courtesy of Colin Seftor, SSAI at NASA Goddard) were as high as 4.3 over the South Atlantic (at 41.81º South latitude, 53.22º West longitude, 17:31:34 UTC) — consistent with the HYSPLIT transport originating at 7 km.

Suomi NPP OMPS Aerosol Index on 30 January [click to enlarge]

Suomi NPP OMPS Aerosol Index on 30 January [click to enlarge]

Additional Suomi NPP VIIRS True-color and OMPS Aerosol Index images can be found on the OMPS Blog.

===== 01 February Update =====

This analysis of CALIPSO CALIOP data (courtesy of Mike Fromm, NRL) suggests that the upper-tropospheric smoke from this pyroCb event was transported as far as the eastern South Atlantic Ocean by 02 UTC on 01 February, having ascended to altitudes in the 9-10 km range.

Blowing dust in Texas and Oklahoma

GOES-16

GOES-16 “Moisture” Infrared brightness temperature difference (10.3-12.3 µm) images, with hourly surface reports plotted in cyan [click to play animation]

Strong winds in the wake of a cold frontal passage created large areas of blowing dust across the Panhandle Plains of northwestern Texas after 16 UTC on 21 January 2018. GOES-16 “Moisture” or “split-window difference” (10.3 µm12.3 µm) images (above) showed that the leading edge of this airborne dust moved over far southwestern Oklahoma after 20 UTC. (Note to AWIPS users: the default enhancement for this GOES-16 “Moisture” Channel Difference product was changed to “Grid/lowrange enhanced” to better highlight the dust with shades of yellow)

GOES-16 “Red” Visible (0.64 µm) and Near-Infrared “Cirrus” (1.37 µm) images (below) also displayed blowing dust signatures; the surface visibility was restricted to 2-3 miles at some locations, with Big Spring briefly reporting only 1/4 mile from 20-21 UTC. The dust signature was apparent on the Cirrus imagery because this spectral band can be used to detect any airborne particles that are effective scatterers of light (such as cirrus ice crystals, volcanic ash, dust/sand or haze).

GOES-16

GOES-16 “Red” Visible (0.64 µm) images, with hourly reports of surface weather plotted in red and surface visibility (miles) plotted in red [click to play animation]

GOES-16 Near-Infrared

GOES-16 Near-Infrared “Cirrus” (1.37 µm) images, with hourly reports of surface weather plotted in red and surface visibility (miles) plotted in red [click to play animation]

A Cirrus band is also available with the MODIS instrument on the Terra and Aqua satellites (as well as the VIIRS instrument on Suomi NPP and NOAA-20) — a comparison of Visible (0.65 µm), Cirrus (1.37 µm), Shortwave Infrared (3.7 µm) and Infrared Window (11.0 µm) images from Terra and Aqua (below) highlighted the differing appearance of the blowing dust features as sensed by each of those spectral bands. The airborne dust exhibited a darker signature in the Shortwave Infrared images since the small dust particles were efficient reflectors of incoming solar radiation, thus appearing warmer at 3.7 µm.

Terra MODIS Visible (0.65 µm), Cirrus (1.37 µm), Shortwave Infrared (3.7 µm) and Infrared Window (11.0 µm) images, with surface reports plotted in cyan [click to enlarge]

Terra MODIS Visible (0.65 µm), Cirrus (1.37 µm), Shortwave Infrared (3.7 µm) and Infrared Window (11.0 µm) images, with surface reports plotted in cyan [click to enlarge]

Aqua MODIS Visible (0.65 µm), Cirrus (1.37 µm), Shortwave Infrared (3.7 µm) and Infrared Window (11.0 µm) images, with surface reports plotted in cyan [click to enlarge]

Aqua MODIS Visible (0.65 µm), Cirrus (1.37 µm), Shortwave Infrared (3.7 µm) and Infrared Window (11.0 µm) images, with surface reports plotted in cyan [click to enlarge]

Pilot reports within 20-45 minutes after the Terra overpass time (below) revealed Moderate to Severe turbulence at an elevation of 8000 feet, just southeast of the most dense dust plume feature (highlighted by the cooler, lighter gray infrared brightness temperatures) — this was likely due to strong wind shear in the vicinity of the rapidly-advancing cold front. Farther to the southwest, another pilot report indicated that the top of the blowing dust was at 7000 feet, with a flight-level visibility of 3 miles at 10,000 feet.

Terra MODIS Infrared Window (11.0 µm) image, with a pilot report of turbulence highlighted in red [click to enlarge]

Terra MODIS Infrared Window (11.0 µm) image, with a pilot report of turbulence highlighted in red [click to enlarge]

Terra MODIS Infrared Window (11.0 µm) image, with a pilot report of dust layer top and flight level visibility highlighted in red [click to enlarge]

Terra MODIS Infrared Window (11.0 µm) image, with a pilot report of dust layer top and flight level visibility highlighted in red [click to enlarge]

Severe turbulence over Hawai’i

GOES-15 Water Vapor (6.5 µm) images, with hourly pilot reports of turbulence [click to play animation]

GOES-15 Water Vapor (6.5 µm) images, with hourly pilot reports of turbulence [click to play animation]

Numerous pilot reports of moderate to severe turbulence were received over the Hawai’i area on 12 January 2018 — and GOES-15 (GOES-West) Water Vapor (6.5 µm) images (above; also available as an MP4) showed the development of a quasi-stationary gravity wave train over the northwestern portion of the island chain which appeared to be associated with many of these pilot reports.

HNL UA /OV 2115N16010W/TM 2241/FL320/TP B767/TB CONT MOD TURB

HNL UUA /OV 2115N16048W/TM 2255/FL340/TP H/B747/TB MOD-SEV TURB

HNL UUA /OV BOARD/TM 2350/FL370/TP H/B772/TB SEVERE TURB

PHNL UUA /OV 2443N 15516W /TM 2358 /FL370 /TP B737 /TB SEV 370 /RM ZOA CWSU AWC-WEB

In spite of the large satellite viewing angle, these waves were also very evident on Himawari-8 Lower-level (7.3 µm), Mid-level (6.9 µm) and Upper-level (6.2 µm) Water Vapor images (below; also available as an MP4). The 3 Water Vapor bands on the Himawari AHI are nearly identical to the 3 Water Vapor bands on the GOES-R series ABI.

Himawari-8 Low-level (7.3 µm, left), Mid-level (6.9 µm, center) and 6.2 µm, right) Water Vapor images, with hourly pilot reports of turbulence [click to play animation]

Himawari-8 Low-level (7.3 µm, left), Mid-level (6.9 µm, center) and Upper-level (6.2 µm, right) Water Vapor images, with hourly pilot reports of turbulence [click to play animation]

A toggle between 1-km resolution Terra MODIS Water Vapor (6.7 µm), Infrared Window (11.0 µm) and 250-meter resolution true-color Red-Green-Blue RGB images at 2106 UTC on 12 January (below) showed that no high-altitude clouds were associated with the gravity wave features — thus, these aircraft encounters were examples of Clear Air Turbulence (CAT).

Terra MODIS Water Vapor (6.7 µm) and True-color RGB images [click to enlarge]

Terra MODIS Water Vapor (6.7 µm), Infrared Window (11.0 µm) and true-color RGB images [click to enlarge]

A color-enhanced version of the Aqua MODIS Water Vapor (6.7 µm) image at 0014 UTC on 13 January is shown below (courtesy of Jordan Gerth, CIMSS).

An AWIPS screen capture (below, courtesy of Robert Bohlin, NWS Honolulu and Jordan Gerth, CIMSS) displays a High Pass filter product along with the 3 individual Himawari-8 Water Vapor band images at 0120 UTC on 13 January.

Upper-level Water Vapor (6.2 µm, upper right), Mid-level Water Vapor (6.9 µm, lower left) and Lower-level Water Vapor (7.3 µm, lower right) images [click to enlarge]

Himawari-8 High Pass filter product (6.9 µm, upper left), Upper-level Water Vapor (6.2 µm, upper right), Mid-level Water Vapor (6.9 µm, lower left) and Lower-level Water Vapor (7.3 µm, lower right) images [click to enlarge]

It bears mention that the rawinsonde data from Lihue, Hawai’i at 0000 UTC on 13 January (below) indicated significant wind shear (both speed and directional) within the 200-300 hPa layer (text listing) — the layer in which many of the turbulence reports were found.

Rawinsonde data from Lihue, Hawai'i at 00 UTC on 13 January [click to enlarge]

Rawinsonde data from Lihue, Hawai’i at 00 UTC on 13 January [click to enlarge]

The packet of gravity waves was directly over Lihue (red asterisk) at that time (below).

GOES-15 Water Vapor (6.5 µm) image at 0000 UTC on 13 January, with pilot reports of turbulence plotted. The red asterisk denotes the location of Lihue [click to enlarge]

GOES-15 Water Vapor (6.5 µm) image at 0000 UTC on 13 January, with pilot reports of turbulence plotted. The red asterisk denotes the location of Lihue [click to enlarge]

Satellite signatures of a “sting jet”

GOES-16 Lower-level (7.3 µm) images, with hourly plots of buoy and ship reports [click to play MP4 animation]

GOES-16 Lower-level (7.3 µm) images, with hourly plots of buoy and ship reports [click to play MP4 animation]

Satellite signatures of a phenomenon known as a “sting jet” have been shown previously on this blog here, here and here. GOES-16 (GOES-East) Lower-level (7.3 µm) Water Vapor images (above) revealed another classic example of the “scorpion tail” signature of a sting jet associated with the rapidly-intensifying storm off the coast of North Carolina on 04 January 2018.

The passenger cruise ship Norwegian Breakaway was en route to New York City from the Bahamas when it experienced very strong winds and rough seas early in the morning on 04 January (media story) — it appears as though the ship may have been in the general vicinity of this sting jet feature (ship data), where intense winds were descending to the surface from higher levels of the atmosphere:

A comparison of GOES-16 (GOES-East) and GOES-13 Water Vapor images (below) demonstrated how the GOES-16 improvement in spatial resolution  (2 km at satellite sub-point, vs 4 km for GOES-13) and more frequent imaging (routinely every 5 minutes over the CONUS domain, vs 15-30 minutes for GOES-13) helped to better follow the evolution of the sting jet feature. The 2 known locations of the Norwegian Breakaway around the time period of the image animation are plotted in red.

"Water

Water Vapor images from GOES-16 (6.9 µm, left) and GOES-13 (6.5 µm, right), with the 2 known locations of the Norwegian Breakaway plotted in red [click to play MP4 animation]

The sting jet signature was also apparent on GOES-16 Mid-level (6.9 µm) and Upper-level (6.2 µm) Water Vapor images (below).

GOES-16 Mid-level (6.9 µm) images, with hourly plots of buoy and ship reports [click to play MP4 animation]

GOES-16 Mid-level (6.9 µm) images, with hourly plots of buoy and ship reports [click to play MP4 animation]

GOES-16 Upper-level (6.2 µm) images, with hourly plots of buoy and ship reports [click to play MP4 animation]

GOES-16 Upper-level (6.2 µm) images, with hourly plots of buoy and ship reports [click to play MP4 animation]

In addition, the sting jet signature was evident in a Suomi NPP VIIRS Day/Night Band (0.7 µm) image at 0614 UTC or 1:14 AM Eastern time (below). Through the clouds, the faint glow of city lights in far eastern North Carolina could be seen along the left edge of the image. The cloud features shown using the “visible image at night” VIIRS Day/Night Band were brightly-illuminated by the Moon, which was in the Waning Gibbous phase at 92% of Full. A VIIRS instrument is aboard the JPSS series of satellites, such as the recently-launched NOAA-20.

Suomi NPP VIIRS Day/Night Band (0.7 µm) image [click to enlarge]

Suomi NPP VIIRS Day/Night Band (0.7 µm) image [click to enlarge]

Another view of the sting jet signature was seen in a 250-meter resolution Aqua MODIS Infrared Window (11.0 µm) image at 0725 UTC (below).

Aqua MODIS Infrared Window (11.0 µm) image [click to enlarge]

Aqua MODIS Infrared Window (11.0 µm) image [click to enlarge]

Record-setting lake effect snow event at Erie, Pennsylvania

1-minute GOES-16 "Clean" Infrared Window (10.3 µm) images, with hourly surface reports plotted in cyan/yellow [click to play MP4 animation]

1-minute GOES-16 “Clean” Infrared Window (10.3 µm) images, with hourly surface reports plotted in cyan/yellow [click to play MP4 animation]

GOES-16 “Clean” Infrared Window (10.3 µm) images centered over Lake Erie (above) showed the evolution of lake effect snow bands on 25 December26 December 2017, which produced very heavy snowfall at locations such as Erie, Pennsylvania (station identifier KERI); a Mesoscale Sector provided images at 1-minute intervals. Some noteworthy snowfall records were set at Erie PA:

(27 December Update: additional lake effect snow at Erie on 27 December brought the final storm total accumulation to 65.1 inches: NWS Cleveland summary. NOHRSC plots showed a maximum snow depth of 49 inches just southwest of downtown Erie; the maximum snow depth at Erie International Airport was 28 inches on 26 December, which was still less than their all-time record snow depth of 39 inches on 21 December 1989)

A sequence of Infrared Window images captured by Terra/Aqua MODIS (11.0 µm) and Suomi NPP VIIRS (11.45 µm) is shown below. The coldest cloud-top infrared brightness temperatures associated with the dominant lake effect snow bands were in the -30 to -35 ºC range (dark blue to pale green color enhancement), similar to what was seen in the GOES-16 Infrared Window imagery.

Infrared Window images from Terra/Aqua MODIS (11.0 µm) and Suomi NPP VIIRS (11.45 µm), with surface reports plotted in yellow [click to enlarge]

Infrared Window images from Terra/Aqua MODIS (11.0 µm) and Suomi NPP VIIRS (11.45 µm), with surface reports plotted in yellow [click to enlarge]

Farther to the northeast, these Lake Erie lake effect bands also produced significant snowfall in far southwestern New York, with 32 inches reported at Perrysburg (located 20 miles west of Dunkirk, station identifier KDKK). In addition, lake effect snow bands over Lake Ontario were responsible for even higher snowfall amounts:


1-minute GOES-16 “Red” Visible (0.64 µm) images (below) showed the lake effect snow bands over Lake Ontario on 26 December.

1-minute GOES-16 "Red" Visible (0.64 µm) images, with hourly surface reports plotted in yellow [click to play MP4 animation]

1-minute GOES-16 “Red” Visible (0.64 µm) images, with hourly surface reports plotted in yellow [click to play MP4 animation]

Aircraft hole punch and distrail cloud features over southern Lake Michigan

GOES-16

GOES-16 “Red” Visible (0.64 µm, top) and Near-Infrared “Snow/Ice” (1.61 µm. bottom) images, with surface station identifiers plotted in yellow [click to play MP4 animation]

GOES-16 (GOES-East) “Red” Visible (0.64 µm) and Near-Infrared “Snow/Ice” (1.61 µm) images (above) revealed a number of aircraft “hole punch clouds” and cloud dissipation or “distrail” features drifting eastward across southern Lake Michigan and adjacent states on 20 December 2017. These cloud features were caused by aircraft that were either ascending or descending through a layer of cloud composed of supercooled water droplets — cooling from wake turbulence (reference) and/or particles from the jet engine exhaust acting as ice condensation nuclei cause the small supercooled water droplets to turn into larger ice crystals (many of which then often fall from the cloud layer, creating “fall streak holes“). The darker gray appearance of the hole punch clouds on 1.61 µm images confirms that the features were composed of ice crystals (since ice is a strong absorber of radiation at that wavelength).

A good example of a hole punch cloud adjacent to a longer distrail feature was seen over far southeastern Minnesota and the Minnesota/Wisconsin border, using 250-meter resolution Aqua MODIS true-color and false-color Red-Green-Blue (RGB) images from the MODIS Today site (below). Glaciated (ice crystal) cloud features appeared as darker shades of cyan in the false-color image.

Aqua MODIS true-color and false-color RGB images [click to enlarge]

Aqua MODIS true-color and false-color RGB images [click to enlarge]

A very detailed view of a hole punch cloud over Lake Michigan was provided by 30-meter resolution Landsat-8 false-color imagery at 1635 UTC, viewed using RealEarth (below).

Landsat-8 false-color RGB image [click to enlarge]

Landsat-8 false-color RGB image [click to enlarge]

===== 21 December Update =====

Another example of numerous aircraft hole punch and distrail cloud features was seen on Terra MODIS true-color and false-color RGB images on 21 December. over northern Illinois and northern Indiana (below).

Terra MODIS true-color and false-color images [click to enlarge]

Terra MODIS true-color and false-color RGB images [click to enlarge]

Day 14 of the Thomas Fire in Southern California

GOES-15 Shortwave Infrared (3.9 µm) images, with surface station identifiers plotted in yellow [click to play MP4 animation]

05-17 December GOES-15 Shortwave Infrared (3.9 µm) images, with surface station identifiers plotted in yellow and State Highway 101 plotted in cyan [click to play MP4 animation]

The Thomas Fire (InciWeb | Wikipedia) began to burn around 0226 UTC on 05 December 2017 (or 6:26 PM Pacific time on 04 December). By 17 December, the fire had burned 270,000 acres — the third largest wildfire on record in California — and caused 1 fatality. An animation of GOES-15 (GOES-West) Shortwave Infrared (3.9 µm) images (above) showed the evolution of the thermal signature (or “hot spots”, as depicted by darker black to yellow to red pixels) during the 0200 UTC 05 December to 0215 UTC 18 December time period. Besides the largest Thomas Fire, other smaller and more short-lived fires could also be seen — especially early in the period, when the Santa Ana winds were strongest (05-07 December blog post). Thick clouds moving over the region later in the period either attenuated or completely masked the thermal signatures, even though the fire was ongoing.

GOES-16 began transmitting imagery (from its GOES-East position at 75.2º W) at 1630 UTC on 14 December — a comparison of GOES-15 and GOES-16 Shortwave Infrared (3.9 µm) during the 14-17 December period (below) showed that in spite of the larger GOES-16 satellite view angle (62.6º, vs 43.2º for GOES-15), the improved spatial resolution (2 km vs 4 km at satellite sub-point) and improved temporal resolution (images every 5 minutes, with no 30-minute gaps due to Full Disk scans) provided a more accurate depiction of the fire trends and intensities.

GOES-15 (left) and GOES-16 (right) Shortwave Infrared (3.9 µm) images [click to play MP4 animation]

GOES-15 (left) and GOES-16 (right) Shortwave Infrared (3.9 µm) images [click to play MP4 animation]

In a comparison of 250-meter resolution Terra MODIS true-color and false-color Red-Green-Blue (RGB) images (source) at 1853 UTC on 17 December (below), minimal amounts of smoke and a lack of clouds allowed a good view of the large Thomas Fire burn scar (darker shades of reddish-brown) on the false-color image.

Terra MODIS true-color and false-color RGB images on 17 December [click to enlarge]

Terra MODIS true-color and false-color RGB images on 17 December [click to enlarge]

During the first full day of the fires on 05 December, a toggle between comparable Aqua MODIS true-color and false-color images (source) revealed very thick smoke plumes drifting southwestward over the adjacent offshore waters of the Pacific Ocean (below).

Aqua MODIS true-color and false-color images, 05 December [click to enlarge]

Aqua MODIS true-color and false-color RGB images on 05 December [click to enlarge]

A toggle between 05 December Aqua MODIS and 17 December Terra MODIS false-color images (below) showed the northward and northwestward growth of the Thomas Fire burn scar.

Aqua MODIS (05 December) and Terra MODIS (17 December) false-color RGB images [click to enlarge]

Aqua MODIS (05 December) and Terra MODIS (17 December) false-color RGB images [click to enlarge]

Snowfall across the Deep South

GOES-13 Visible (0.63 µm) images [click to play animation]

GOES-13 Visible (0.63 µm) images [click to play animation]

GOES-13 (GOES-East) Visible (0.63 µm) images (above) showed a broad swath of snow cover from Louisiana to Virginia on 09 December 2017. Some notable storm total accumulations included 6.5 inches at Kentwood, Louisiana, 7.0 inches at Bay Springs, Mississippi, 12.0 inches at Jacksonville, Alabama, 2.0 inches at Century, Florida, 18.0 inches at Mountain City, Georgia, 7.0 inches near Roan Mountain, Tennessee, and 25 inches at Mt. Mitchell State Park, North Carolina. Daily record snowfall accumulations included a Trace at New Orleans, Louisiana, 5.1 inches at Jackson, Mississippi and 1 inch at Mobile, Alabama.

A closer view of GOES-13 visible images (below) showed the band of snow cover across Louisiana, Mississippi and Alabama. Much of the the snow melted quickly, due to warm ground temperatures and a full day of sun.

GOES-13 Visible (0.63 µm) images, with station identifiers plotted in yellow [click to play animation]

GOES-13 Visible (0.63 µm) images, with hourly surface reports plotted in yellow [click to play animation]

A more detailed view of the snow cover was provided by 250-meter resolution Terra and Aqua MODIS true-color Red-Green-Blue (RGB) images from the SSEC MODIS Direct Broadcast site (below). Note that snow cover was evident all the way to the Gulf Coast at Atchafalaya Bay, Louisiana early in the day.

Terra and Aqua MODIS true-color RGB images of the central Gulf Coast region [click to enlarge]

Terra and Aqua MODIS true-color images of the central Gulf Coast region [click to enlarge]

Terra and Aqua MODIS true-color RGB images, centered over Atchafalaya Bay, Louisiana [click to enlarge]

Terra and Aqua MODIS true-color RGB images, centered over Atchafalaya Bay, Louisiana [click to enlarge]

Terra and Aqua MODIS true-color images, centered over New Orleans, Louisiana [click to enlarge]

Terra and Aqua MODIS true-color images, centered over New Orleans, Louisiana [click to enlarge]

Terra MODIS true-color image, centered over Atlanta, Georgia [click to enlarge]

Terra MODIS true-color image, centered over Atlanta, Georgia [click to enlarge]

It is interesting to note that with the aid of reflected moonlight — the Moon was in the Waning Gibbous phase, at 59% of Full — the Suomi NPP VIIRS Day/Night Band (0.7 µm) was able to detect the area of deeper snow cover across southeastern Louisiana and southern Mississippi at 0741 UTC or 1:41 AM local time; this snow cover was then seen during the following morning on GOES-13 Visible (0.63 µm) imagery at 1440 UTC or 8:40 AM local time (below). A VIIRS instrument is part of the payload on the recently-launched JPSS-1/NOAA-20 satellite.

Suomi NPP VIIRS Day/Night Band (0.7 µm) and GOES-13 Visible (0.63 µm) images [click to enlarge]

Suomi NPP VIIRS Day/Night Band (0.7 µm) and GOES-13 Visible (0.63 µm) images [click to enlarge]