Category Archives: Fire detection

Pyrocumulonimbus cloud in Argentina

GOES-16 Visible (0.64 µm, top), Shortwave Infrared (3.9 µm, center) and Infrared Window (10.3 µm) images [click to play animation]

GOES-16 Visible (0.64 µm, top), Shortwave Infrared (3.9 µm, center) and Infrared Window (10.3 µm, bottom) images [click to play animation]

A large cluster of fires burning in central Argentina became hot enough to generate a brief pyrocumulonimbus (pyroCb) cloud on 29 January 2018; according to media reports, on that day there were winds of 55 km/hour (34 mph) and temperatures of 37 ºC (98.6 ºF) in the vicinity of these La Pampa province fires. GOES-16 (GOES-East) “Red” Visible (0.64 µm), Shortwave Infrared (3.9 µm) and “Clean” Infrared Window (10.3 µm) images (above; also available as an MP4 animation) showed the smoke plumes, fire thermal anomalies or “hot spots” (red pixels) and the cold cloud-top infrared brightness temperatures, respectively. The minimum 10.3 µm temperature was -32.6 ºC at 1745 UTC. Note the relatively warm (darker gray) appearance on the 3.9 µm image — this is a characteristic signature of pyroCb clouds tops, driven by the aerosol-induced shift toward smaller ice particles (which act as more efficient reflectors of incoming solar radiation).

An Aqua MODIS True-color Red-Green-Blue (RGB) image viewed using RealEarth (below) showed the dense lower-tropospheric smoke drifting southward and southeastward from the fire source region, as well as the narrow upper-tropospheric anvil of the pyroCb cloud. Suomi NPP VIIRS fire detection locations are plotted as red dots on the final zoomed-in image. The actual time of the Aqua satellite pass over Argentina was 1812 UTC.

Aqua MODIS True-color RGB image, with Suomi NPP VIIRS fire detection locations [click to enlarge]

Aqua MODIS True-color RGB image, with Suomi NPP VIIRS fire detection locations [click to enlarge]

According to Worldview the coldest MODIS Infrared Window (11.0 µm) cloud-top  brightness temperature was -41.2 ºC, thus surpassing the -40 ºC threshold that is generally accepted to classify it as a pyroCb. This is believed to be the first confirmed pyroCb event in South America.

Approximately 120 km north-northeast of the pyroCb cloud, rawinsonde data from Santa Rosa, Argentina (below) indicated that the -41 ºC cloud-top temperature corresponded to altitudes in the 10.8 to 11.6 km range. The air was very dry at that level in the upper troposphere, contributing to the rapid dissipation of the pyroCb cloud material as seen in GOES-16 imagery.

Plots of rawinsonde data from Santa Rosa, Argentina [click to enlarge]

Plots of rawinsonde data from Santa Rosa, Argentina [click to enlarge]

48-hour HYSPLIT forward trajectories originating from the center of the pyroCb cloud at altitudes of 7, 9 and 11 km (below) suggested that a rapid transport of smoke over the adjacent offshore waters of the Atlantic Ocean was likely at those levels.

HYSPLIT forward trajectories originating at altitudes of 7, 9 and 11 km [click to enlarge]

HYSPLIT forward trajectories originating at altitudes of 7, 9 and 11 km [click to enlarge]

On 30 January, Suomi NPP OMPS Aerosol Index values (below; courtesy of Colin Seftor, SSAI at NASA Goddard) were as high as 4.3 over the South Atlantic (at 41.81º South latitude, 53.22º West longitude, 17:31:34 UTC) — consistent with the HYSPLIT transport originating at 7 km.

Suomi NPP OMPS Aerosol Index on 30 January [click to enlarge]

Suomi NPP OMPS Aerosol Index on 30 January [click to enlarge]

Additional Suomi NPP VIIRS True-color and OMPS Aerosol Index images can be found on the OMPS Blog.

===== 01 February Update =====

This analysis of CALIPSO CALIOP data (courtesy of Mike Fromm, NRL) suggests that the upper-tropospheric smoke from this pyroCb event was transported as far as the eastern South Atlantic Ocean by 02 UTC on 01 February, having ascended to altitudes in the 9-10 km range.

A prescribed burn in Montana, as viewed from GOES-15, GOES-16 and GOES-13

GOES-15 (left), GOES-16 (center) and GOES-13 (right) Shortwave Infrared (3.9 µm) images, with plots of hourly surface reports [click to play MP4 animation]

GOES-15 (left), GOES-16 (center) and GOES-13 (right) Shortwave Infrared (3.9 µm) images, with plots of hourly surface reports [click to play MP4 animation]

A prescribed burn the SureEnough fire — in central Montana was viewed by GOES-15 (GOES-West), GOES-16 (GOES-East) and GOES-13 Shortwave Infrared (3.9 µm) imagery on 02 January 2018. The images are shown in the native projection for each of the 3 satellites.

Due to the improved spatial resolution of the GOES-16 3.9 µm Shortwave Infrared band (2 km at satellite sub-point, vs 4 km for GOES-15 and GOES-13) and the more frequent image scans (routinely every 5 minutes over CONUS for GOES-16), an unambiguous thermal anomaly or fire “hot spot” was first evident on GOES-16 at 1707 UTC, just southeast of Lewistown (station identifier KLWT). The GOES-16 fire thermal signature was also hotter (black pixels) compared to either GOES-15 or GOES-13.

Day 14 of the Thomas Fire in Southern California

GOES-15 Shortwave Infrared (3.9 µm) images, with surface station identifiers plotted in yellow [click to play MP4 animation]

05-17 December GOES-15 Shortwave Infrared (3.9 µm) images, with surface station identifiers plotted in yellow and State Highway 101 plotted in cyan [click to play MP4 animation]

The Thomas Fire (InciWeb | Wikipedia) began to burn around 0226 UTC on 05 December 2017 (or 6:26 PM Pacific time on 04 December). By 17 December, the fire had burned 270,000 acres — the third largest wildfire on record in California — and caused 1 fatality. An animation of GOES-15 (GOES-West) Shortwave Infrared (3.9 µm) images (above) showed the evolution of the thermal signature (or “hot spots”, as depicted by darker black to yellow to red pixels) during the 0200 UTC 05 December to 0215 UTC 18 December time period. Besides the largest Thomas Fire, other smaller and more short-lived fires could also be seen — especially early in the period, when the Santa Ana winds were strongest (05-07 December blog post). Thick clouds moving over the region later in the period either attenuated or completely masked the thermal signatures, even though the fire was ongoing.

GOES-16 began transmitting imagery (from its GOES-East position at 75.2º W) at 1630 UTC on 14 December — a comparison of GOES-15 and GOES-16 Shortwave Infrared (3.9 µm) during the 14-17 December period (below) showed that in spite of the larger GOES-16 satellite view angle (62.6º, vs 43.2º for GOES-15), the improved spatial resolution (2 km vs 4 km at satellite sub-point) and improved temporal resolution (images every 5 minutes, with no 30-minute gaps due to Full Disk scans) provided a more accurate depiction of the fire trends and intensities.

GOES-15 (left) and GOES-16 (right) Shortwave Infrared (3.9 µm) images [click to play MP4 animation]

GOES-15 (left) and GOES-16 (right) Shortwave Infrared (3.9 µm) images [click to play MP4 animation]

In a comparison of 250-meter resolution Terra MODIS true-color and false-color Red-Green-Blue (RGB) images (source) at 1853 UTC on 17 December (below), minimal amounts of smoke and a lack of clouds allowed a good view of the large Thomas Fire burn scar (darker shades of reddish-brown) on the false-color image.

Terra MODIS true-color and false-color RGB images on 17 December [click to enlarge]

Terra MODIS true-color and false-color RGB images on 17 December [click to enlarge]

During the first full day of the fires on 05 December, a toggle between comparable Aqua MODIS true-color and false-color images (source) revealed very thick smoke plumes drifting southwestward over the adjacent offshore waters of the Pacific Ocean (below).

Aqua MODIS true-color and false-color images, 05 December [click to enlarge]

Aqua MODIS true-color and false-color RGB images on 05 December [click to enlarge]

A toggle between 05 December Aqua MODIS and 17 December Terra MODIS false-color images (below) showed the northward and northwestward growth of the Thomas Fire burn scar.

Aqua MODIS (05 December) and Terra MODIS (17 December) false-color RGB images [click to enlarge]

Aqua MODIS (05 December) and Terra MODIS (17 December) false-color RGB images [click to enlarge]

GOES-16 is on-station at 75.2ºW, ready to soon become GOES-East

GOES-16 Full-Disk Mid-level Water Vapor image [click to enlarge]

GOES-16 Full-Disk Mid-level Water Vapor images [click to enlarge]

* GOES-16 data posted on this page are preliminary, non-operational and are undergoing testing *

The GOES-16 satellite finished its eastward drift from the initial check-out position at 89.5º West longitude, arriving at 75.2º West on 11 December 2017 — and should officially be declared the operational GOES-East satellite by 20 December. Shown here are some of the first GOES-16 images that began flowing on 14 December via GOES Rebroadcast (GRB) and the Satellite Broadcast Network (SBN): Full Disk Mid-level Water Vapor (6.9 µm) (above) and “Red” Visible (0.64 µm) (below).  Similar Full Disk animations of Lower-level (7.3 µm) and Upper-level (6.2 µm) Water Vapor images are available here and here.

GOES-16 Full-Disk Visible (0.64 µm) image [click to enlarge]

GOES-16 Full-Disk Visible (0.64 µm) images [click to enlarge]

Taking a closer look at the 15-minute Full Disk Visible imagery (below), smoke from wildfires burning in Southern California could seen moving a considerable distance to the southwest over the Pacific Ocean. Note that the smoke features became brighter toward sunset — this was due to a more favorable forward scattering geometry between the sun, the smoke and the satellite sensors.

GOES-16 Visible (0.64 µm) images [click to play animation]

GOES-16 Visible (0.64 µm) images [click to play animation]

Since the atmospheric column over that region of the Pacific was quite dry (as seen in the Water Vapor imagery), the Near-Infrared “Cirrus” (1.37 µm) images (below) were able to display a subtle signature of the smoke features — recall that the strength of the 1.37 µm spectral band is detection of particles that are efficient scatterers of light (such as cirrus ice crystals, volcanic ash, dust and smoke).

GOES-16 Near-Infrared

GOES-16 Near-Infrared “Cirrus” (1.37 µm) images [click to play animation]

The 2 examples below show that GOES-16 CONUS sector coverage and resolution over the western US is still quite good (even with the large satellite viewing angle).

GOES-16 Visible (0.64 µm) image [click to enlarge]

GOES-16 Visible (0.64 µm) image of the southwestern US [click to enlarge]

GOES-16 Shortwave Infrared (3.9 µm) image, showing thermal signatures of wildfires in Southern California [click to enlarge]

GOES-16 Visible (0.64 µm) and Shortwave Infrared (3.9 µm) images, showing smoke plumes and thermal signatures of wildfires in Southern California [click to enlarge]

A multi-panel image featuring all 16 spectral bands of the GOES-16 ABI at 1537 UTC is shown below.

Multi-panel images showing all 16 bands of the GOES-16 ABI [click to enlarge]

Multi-panel images showing all 16 bands of the GOES-16 ABI [click to enlarge]

Realtime GOES-16 ABI imagery can be found at: https://www.ssec.wisc.edu/data/geo/#/animation?satellite=goes-16 and https://re.ssec.wisc.edu/s/QFMBi.

Day 7 of the Thomas Fire in Southern California

GOES-15 Shortwave Infrared (3.9 µm) images, with hourly surface reports plotted in yellow [click to play MP4 animation]

GOES-15 Shortwave Infrared (3.9 µm) images, with hourly surface reports plotted in yellow [click to play MP4 animation]

The Thomas fire began burning in Southern California around 6:30 PM local time on 04 December (blog post) — and on 10 December 2017, GOES-15 (GOES-West) Shortwave Infrared (3.9 µm) images (above) revealed that the fire showed little signs of diminishing during the nighttime hours, and in fact began to exhibit a trend of intensification around 05 UTC or 9 PM local time. However, toward the end of the day on 10 December, bands of  thick cirrus clouds moving over the fire region acted to dramatically attenuate the satellite-detected thermal signature of the fire complex. Although the Santa Ana winds were not as intense as they had been during the previous week, some strong wind gusts were still observed.

A sequence of 4 Shortwave Infrared images from Terra MODIS and Suomi NPP VIIRS (below) showed the westward and northwestward expansion of the fire during the 0637 to 2032 UTC period. The Thomas fire has now burned 230,000 acres, making it the fifth largest wildfire on record in California.

Terra MODIS and Suomi NPP VIIRS Shortwave Infrared images, with corresponding surface reports plotted in cyan [click to enlarge]

Terra MODIS and Suomi NPP VIIRS Shortwave Infrared images, with corresponding surface reports plotted in cyan [click to enlarge]

In a toggle between Terra MODIS true-color and false-color Red-Green-Blue (RGB) images at 1846 UTC (below; source) the true-color image revealed a broad plume of thick smoke being transported westward and northwestward from the fire source region, while the false-color image showed the areal coverage of the burn scar (which appeared as reddish-brown hues beneath the clouds) as well as locations of the larger and more intense active fires (brighter pink to white) that were burning along the northern to western perimeter of the burn scar.

Terra MODIS true-color and false-color images [click to enlarge]

Terra MODIS true-color and false-color images [click to enlarge]

A comparison of Suomi NPP VIIRS Visible (0.64 µm), Shortwave Infrared (3.74 µm) and Infrared Window (11.45 µm) images at 2032 UTC or 12:32 PM  local time (below) showed a well-defined thermal signature before the thicker cirrus clouds moved overhead from the south. A small cloud cluster (located just northwest of the fire thermal signature) exhibited a minimum infrared brightness temperature of -43ºC — if this cloud feature was indeed generated by the fire complex, it meets the -40ºC criteria of a pyrocumulonimbus cloud.

Suomi NPP VIIRS Visible (0.64 µm), Shortwave Infrared (3.74 µm) and Infrared Window (11.45 µm) images, with surface reports plotted in cyan [click to enlarge]

Suomi NPP VIIRS Visible (0.64 µm), Shortwave Infrared (3.74 µm) and Infrared Window (11.45 µm) images, with surface reports plotted in cyan [click to enlarge]

The fire was producing very thick smoke, in addition to deep pyrocumulus clouds (top photo taken around 1945 UTC or 11:45 AM local time):

Shown below is a photo taken at 2045 UTC or 12:45 PM local time, from a commercial jet flying into Santa Barbara (courtesy of Henry Dubroff/www.pacbiztimes.com).

Photo of Thomas Fire pyrocumulus [click to enlarge]

Photo of Thomas Fire pyrocumulus [click to enlarge]

===== 11 December Update =====
 

Suomi NPP VIIRS Day/Night Band (0.7 µm), Near-Infrared (1.61 and 2.25 µm), Shortwave Infrared (3.75 and 4.05 µm) and Infrared Window (11.45 µm) images [click to enlarge]

Suomi NPP VIIRS Day/Night Band (0.7 µm), Near-Infrared (1.61 and 2.25 µm), Shortwave Infrared (3.75 and 4.05 µm) and Infrared Window (11.45 µm) images [click to enlarge]

A toggle between Suomi NPP VIIRS Day/Night Band (0.7 µm), Near-Infrared (1.61 and 2.25 µm), Shortwave Infrared (3.75 and 4.05 µm) and Infrared Window (11.45 µm) images at 1035 UTC or 2:35 AM local time (above; courtesy of William Straka, CIMSS) demonstrated how different spectral bands can be used to detect nighttime fire signatures. The maximum infrared brightness temperature on the 4.05 µm image was 389 K (115.9ºC or 240.5ºF). Note that the recently-launched JPSS-1/NOAA-20 satellite also carries a VIIRS instrument.

GOES-15 Shortwave Infrared (3.9 µm) images (below) showed that once the thicker bands of cirrus clouds moved northwestward away from the region, a more well-defined thermal signature became apparent.

GOES-15 Shortwave Infrared (3.9 µm) images, with hourly surface reports plotted in yellow [click to play animation]

GOES-15 Shortwave Infrared (3.9 µm) images, with hourly surface reports plotted in yellow [click to play animation]

A 7-day sequence Nighttime and Daytime composites of Suomi NPP VIIRS Shortwave Infrared (3.74 µm) images (source: RealEarth) is shown below — it illustrates the spread of the Thomas Fire from 05 December to 11 December. Hot infrared pixels are black, with saturated pixels appearing bright white.

7-day sequence Nighttime and Daytime composites of Suomi NPP VIIRS Shortwave Infrared (3.74 µm) images [click to play animation]

7-day sequence Nighttime and Daytime composites of Suomi NPP VIIRS Shortwave Infrared (3.74 µm) images [click to play animation]

Wildfires in southern California

GOES-15 Shortwave Infrared (3.9 µm) images, with hourly surface plots [click to play MP4 animation]

GOES-15 Shortwave Infrared (3.9 µm) images, with hourly surface plots [click to play MP4 animation]

GOES-15 (GOES-West) Shortwave Infrared (3.9 µm) images (above; also available as an animated GIF) showed the rapid development of wildfires driven by strong Santa Ana winds in Southern California on 05 December 2017. The fire thermal anomalies or “hot spots” are highlighted by the dark black to yellow to red pixels — the initial signature was evident on the 0230 UTC image (6:30 PM local time on 04 December), however the GOES-15 satellite was actually scanning that particular area at 0234 UTC or 6:34 PM local time. The Thomas Fire (the largest of the fires) advanced very quickly toward the southwest, nearly reaching the coast.

Nighttime image toggles between Suomi NPP VIIRS Shortwave Infrared (3.74 µm) and Day/Night Band (0.7 µm) data at 0904 UTC and 1044 UTC (below) revealed the large fire hot spots, along with the extensive smoke plume that was drifting over the adjacent nearshore waters of the Pacific Ocean. With ample illumination from the Moon (which was in the Waning Gibbous phase, at 95% of Full), the “visible image at night” capability of the VIIRS Day/Night Band — which will also be available from the recently-launched JPSS-1/NOAA-20 satellite — was clearly demonstrated.

Suomi NPP VIIRS Shortwave Infrared (3.74 µm) and Day/Night Band (0.7 µm) images, with plots of surface reports [click to enlarge]

Suomi NPP VIIRS Shortwave Infrared (3.74 µm) and Day/Night Band (0.7 µm) images, with plots of surface reports [click to enlarge]

Suomi NPP VIIRS Shortwave Infrared (3.74 µm) and Day/Night Band (0.7 µm) images, with plots of surface reports [click to enlarge]

Suomi NPP VIIRS Shortwave Infrared (3.74 µm) and Day/Night Band (0.7 µm) images, with plots of surface reports [click to enlarge]

A toggle between the two VIIRS Day/Night Band images (below; courtesy of William Straka, CIMSS) showed initial darkness resulting from fire-related power outages in Santa Barbara County to the north, and Ventura County to the south (in the Oxnard/Camarillo area).

Suomi NPP VIIRS Day/Night Band (0.7 µm) images [click to enlarge]

Suomi NPP VIIRS Day/Night Band (0.7 µm) images [click to enlarge]

This large wind-driven fire was also very hot — the maximum brightness temperature on the VIIRS 4.05 µm Shortwave Infrared image was 434.6 K or 322.6º F, which was above the saturation threshold of the VIIRS 3.75 µm Shortwave Infrared detectors (below).

Suomi NPP VIIRS 4.05 µm and 3.75 µm Shortwave Infrared images [click to enlarge]

Suomi NPP VIIRS 4.05 µm and 3.75 µm Shortwave Infrared images [click to enlarge]

In a comparison of daytime GOES-15 Visible (0.63 µm) and Shortwave Infrared (3.9 µm) images (below), the west-southwestward transport of smoke over the Pacific Ocean was clearly seen.

GOES-15 Visible (0.63 µm, top) and Shortwave Infrared (3.9 µm, bottom) images [click to play MP4 animation]

GOES-15 Visible (0.63 µm, top) and Shortwave Infrared (3.9 µm, bottom) images [click to play MP4 animation]

A more detailed view of the thick smoke originating from the 3 fires (from north to south: the Thomas, Rye and Creek fires) was provided by a 250-meter resolution Aqua MODIS true-color Red-Green-Blue (RGB) image from the MODIS Today site (below).

Aqua MODIS true-color RGB image [click to enlarge]

Aqua MODIS true-color RGB image [click to enlarge]

Immediately downwind of the Creek Fire, smoke was reducing the surface visibility to 1 mile at Van Nuys and adversely affecting air quality (below).

Time series plot of surface reports at Van Nuys, California [click to enlarge]

Time series plot of surface reports at Van Nuys, California [click to enlarge]

===== 06 December Update =====

Suomi NPP VIIRS Day/Night Band (0.7 µm) and Shortwave Infrared (3.75 µm and 4.05 µm) images [click to enlarge]

Suomi NPP VIIRS Day/Night Band (0.7 µm) and Shortwave Infrared (3.75 µm and 4.05 µm) images [click to enlarge]

The fires in Southern California continued to burn into the following night, as shown by Suomi NPP VIIRS Day/Night Band (0.7 µm) and Shortwave Infrared (3.75 µm and 4.05 µm) images (above; courtesy of William Straka, CIMSS). A large-scale view with Day/Night Band imagery revealed the extent of smoke transport westward over the Pacific Ocean.

GOES-15 Shortwave Infrared (3.9 µm) images (below) displayed the thermal signatures exhibited by the fires. Note the appearance of a new fire — the Skirball Fire — first appearing on the 1300 UTC (5:00 AM local time) image, just north of Santa Monica (KSMO). Although the Santa Ana winds were not quite as strong as the previous day, some impressive wind gusts were still reported.

GOES-15 Shortwave Infrared (3.9 µm) images, with hourly surface plots [click to play MP4 animation]

GOES-15 Shortwave Infrared (3.9 µm) images, with hourly surface plots [click to play MP4 animation]

A toggle between 250-meter resolution Terra (1911 UTC) & Aqua (2047 UTC) MODIS true-color images from MODIS Today (below) showed significant pyrocumulus development from a flare-up along the northeast perimeter of the Thomas Fire. The cloud plume only exhibited a minimum infrared brightness temperature of +5.5º C on the corresponding Aqua MODIS Infrared Window image, far above the -40ºC threshold assigned to pyroCumulonimbus clouds.

Comparison of Terra (1911 UTC) & Aqua (2047 UTC) MODIS true-color RGB images [click to enlarge]

Comparison of Terra (1911 UTC) & Aqua (2047 UTC) MODIS true-color RGB images [click to enlarge]

===== 07 December Update =====

Suomi NPP Day Night Band Imagery, 3-7 December 2017, over southern California

RealEarth imagery of the Day Night Band over 5 days (one image each night from 3 through 7 December), above, shows the evolution of the fire complex (Imagery courtesy Russ Dengel, SSEC). Similarly, a closer view of daily composites of VIIRS Shortwave Infrared (3.74 µm) imagery (below) revealed the growth and spread of the Thomas Fire from 04-07 December.

Suomi NPP VIIRS Shortwave Infrared (3.74 µm) image composites [click to enlarge\

Suomi NPP VIIRS Shortwave Infrared (3.74 µm) image composites [click to enlarge]

In a toggle between Terra MODIS true-color and false-color RGB images (below), the large burn scar of the Thomas Fire (shades of red to brown) was very apparent on the false-color image.

Terra MODIS true-color and false-color images [click to enlarge]

Terra MODIS true-color and false-color images [click to enlarge]

Prescribed burn in Wisconsin

GOES-16 Visible (0.64 µm, left) and Shortwave Infrared (3.9 µm, right) images, with plots of hourly surface reports [click to play MP4 animation]

GOES-16 Visible (0.64 µm, left) and Shortwave Infrared (3.9 µm, right) images, with plots of hourly surface reports [click to play MP4 animation]

* GOES-16 data posted on this page are preliminary, non-operational and are undergoing testing *

GOES-16 “Red” Visible (0.64 µm) and Shortwave Infrared (3.9 µm) images (above; also available as an animated GIF) showed signatures associated with a prescribed burn in western Wisconsin on 28 November 2017. The Shortwave Infrared images revealed a warm thermal anomaly or “hot spot” (dark black to yellow to red pixels) — and on the visible images, a thin smoke plume could be seen drifting southeastward from the fire source.

Early in the animation sequence, however, a band of cirrus cloud was moving over the fire — yet a faint thermal signature (darker gray to black pixels) could occasionally be seen on the Shortwave Infrared imagery. The cirrus cloud layer was thin enough to allow some of the heat energy emitted by the fire to pass through and reach the satellite detectors. Once the cirrus moved to the south, the fire’s hot spot became much more apparent.

A toggle between Terra MODIS Shortwave Infrared (3.7µm) and Infrared Window (11.0 µm) images at 1812 UTC (below) also showed a faint warm fire signature through the cirrus clouds — the cloud-top Infrared Window brightness temperature directly over the fire in northern Monroe County was -33ºC, while the warmest Shortwave Infrared brightness temperature of the subtle fire signature was +1ºC.

Terra MODIS Shortwave Infrared (3.7 µm) and Infrared Window (11.0 µm) images [click to enlarge]

Terra MODIS Shortwave Infrared (3.7 µm) and Infrared Window (11.0 µm) images [click to enlarge]

As was seen on the GOES-16 imagery, after the band of cirrus moved south of the fire an Aqua MODIS Shortwave Infrared (3.7 µm) image at 1912 UTC (below) displayed a pronounced fire hot spot signature.

Aqua MODIS Shortwave Infrared (3.7 µm) image [click to enlarge]

Aqua MODIS Shortwave Infrared (3.7 µm) image [click to enlarge]

(Thanks to Dave Schmidt, NWS La Crosse, for bringing this case to our attention!)

GOES-16 Tools to Observe and Monitor Fires

GOES-16 Visible (0.64 µm) Imagery, 1522-2017 UTC on 9 October 2017 (Click to animate)

GOES-16 data posted on this page are preliminary, non-operational and are undergoing testing.

GOES-16 provides many tools to the Operational Meteorologist, and to National Weather Service Incident Meteorologists (IMETs), to monitor fires when they occur, such as those over Napa and Sonoma Counties in California (Blog Post). Visible (0.64 µm) and Shortwave Infrared (3.9 µm) channels, above and below, respectively, are available routinely at 5-minute intervals over the Continental United States. During daytime, the Visible Imagery is useful for highlighting smoke palls and for alerting meteorologists to any wind changes. The Shortwave Infrared has long been used to detect fires; the shortwave infrared channel on GOES-16 can detect hotter and smaller fires than previous GOES Satellites because of improved spatial resolution and improved bit depth in the imagery.

GOES-16 Shortwave Infrared (3.9 µm) Imagery, 1522-2017 UTC on 9 October 2017 (Click to animate)

GOES-16 Channels can be combined to create Red Green Blue (RGB) Composites that also help identify fires qualitatively. The Fire RGB, below, combines the shortwave IR (3.9 µm) with the 2.2 µm and 1.6 µm channels; as fires get warmer, radiation is emitted at shorter and shorter wavelengths. When this RGB shows white values, you can be certain that the fire is very hot. At some times in the RGB animation, the 3.9 µm imagery is missing where the fire is exceptionally hot, meaning the ‘red’ component of the RGB has no value, and the RGB acquires a blue and green hue.

GOES-16 Fire Temperature RGB, 1522 – 2017 UTC on 9 October 2017 (Click to animate)

The Fire Temperature RGB like the visible imagery shown above offer qualitative information about fire. More quantitative information is available in GOES-16 Baseline Products that are an extension and refinement of the WF-ABBA products available for GOES-13 and GOES-15 (and other satellites). Fire-related products for GOES-16 include Fire Area and Fire Temperature, shown below. The products give the size of the fire within the pixel, and its temperature. These products are valuable in quickly evolving fires to monitor how things change, and the products are available every 5 minutes.

GOES-16 Fire Area Derived Product, 1522-2017 UTC on 9 October 2017 (Click to animate)

GOES-16 Fire Temperature, 1522-2017 UTC on 9 October 2017 (Click to animate)

Finally, GOES-16 has 1-minute Mesoscale Sectors that can be used to closely monitor quickly-evolving fire situations. The 3.9 µm shortwave infrared and Fire RGB images are shown below for a two-hour period. There can be significant changes to a fire in 1 minute, as was seen in this Blog Post! Note again that missing points in the 3.9 µm imagery will show up as green or blue regions in the RGB.

Fire RGB Product, 1931-2130 UTC on 9 October 2017 (Click to animate)

GOES-16 Shortwave Infrared (3.9 µm), 1933 – 2132 UTC on 9 October 2017 (Click to animate)

Wildfires in Northern California

GOES-16 Shortwave Infrared (3.9 µm) images, with county outlines plotted in gray (dashed) and surface station identifiers plotted in white [click to play MP4 animation]

GOES-16 Shortwave Infrared (3.9 µm) images, with county outlines plotted in gray (dashed) and surface station identifiers plotted in white [click to play MP4 animation]

* GOES-16 data posted on this page are preliminary, non-operational and are undergoing testing *

GOES-16 Shortwave Infrared (3.9 µm) images (above) showed the “hot spot” signatures (black to yellow to red pixels) associated with numerous wildfires that began to burn in Northern California’s Napa County around 0442 UTC on 09 October 2017 (9:42 PM local time on 08 October). A strong easterly to northeasterly Diablo wind (gusts) along with dry fuels led to extreme fire behavior, with many of the fires quickly exhibiting very hot infrared brightness temperature values and growing in size at an explosive rate (reportedly burning 80,000 acres in 18 hours).

A comparison of nighttime GOES-16 Shortwave Infrared (3.9 µm) and Near-Infrared “Snow/Ice” (1.61 µm) images (below) offered another example of nocturnal fire signature identification — the bright glow of the fires showed up well on the 1-km resolution 1.61 µm imagery. Especially noteworthy was the very rapid southwestward run of the Tubbs Fire, which eventually moved just south of station identifier KSTS (Santa Rosa Sonoma County Airport; the city of Santa Rosa is located about 5 miles southeast of the airport. These Northern California fires have resulted in numerous fatalities, destroyed at least 3500 homes and businesses, and forced large-scale evacuations (media story).

GOES-16 Shortwave Infrared (3.9 µm, left) and Near-Infrared

GOES-16 Shortwave Infrared (3.9 µm, left) and Near-Infrared “Snow/Ice” (1.61 µm, right) images [click to play MP4 animation]

A toggle between 1007 UTC (3:07 AM local time) Suomi NPP VIIRS Shortwave Infrared (3.74 µm) and Day/Night Band (0.7 µm) images (below) provided a view of the fires at an even higher spatial resolution. Since the Moon was in the Waning Gibbous phase (at 82% of Full), it provided ample illumination to highlight the dense smoke plumes drifting west-southwestward over the adjacent offshore waters of the Pacific Ocean.

Suomi NPP VIIRS Shortwave Infrared (3.74 µm) and Day/Night Band (0.7 µm) images [click to enlarge]

Suomi NPP VIIRS Shortwave Infrared (3.74 µm) and Day/Night Band (0.7 µm) images [click to enlarge]

A closer VIIRS image comparison (with county outlines) is shown below.

Suomi NPP VIIRS Shortwave Infrared (3.74 µm) and Day/Night Band (0.7 µm) images [click to enlarge]

Suomi NPP VIIRS Shortwave Infrared (3.74 µm) and Day/Night Band (0.7 µm) images [click to enlarge]

A comparison of Suomi NPP VIIRS true-color and false-color Red/Green/Blue (RGB) images from RealEarth (below) helped to discriminate between smoke and cloud features offshore over the Pacific Ocean.

Suomi NPP VIIRS True-color and False-color RGB images [click to enlarge]

Suomi NPP VIIRS True-color and False-color RGB images [click to enlarge]

===== 10 October Update =====
Suomi NPP VIIRS true-color and false-color images [click to enlarge]

Suomi NPP VIIRS true-color and false-color images [click to enlarge]

With the switch to southwesterly surface winds on 10 October, smoke plumes could be seen moving northeastward on RealEarth VIIRS true-color imagery, while the burn scars of a number of the larger fires became apparent on VIIRS false-color RGB imagery (above).

===== 11 October Update =====

Landsat-8 false-color RGB images, from 04 October (before the Tubbs Fire) and 11 October (after the Tubbs Fire) [click to enlarge]

Landsat-8 false-color RGB images, from 04 October (before the Tubbs Fire) and 11 October (after the Tubbs Fire) [click to enlarge]

A toggle (above)  between 30-meter resolution Landsat-8 false-color RGB images from 04 October (before the Tubbs Fire) and 11 October (after the Tubbs Fire) showed the size of the fire burn scar (shades of brown) which extended southwestward from the fire source region into Santa Rosa.

===== 12 October Update =====
Suomi NPP VIIRS true-color RGB images, with VIIRS-detected fire locations [click to enlarge]

Suomi NPP VIIRS true-color RGB images, with VIIRS-detected fire locations [click to enlarge]

A transition back to northerly winds on 12 October helped to transport the wildfire smoke far southward over the Pacific Ocean (above). Smoke was reducing surface visibility and adversely affecting air quality at locations such as San Francisco (below).

Time series plot of surface observations at San Francisco International Airport [click to enlarge]

Time series plot of surface observations at San Francisco International Airport [click to enlarge]

Suomi NPP VIIRS Aerosol Optical Depth values were very high — at or near 1.0 — within portions of the dense smoke plume (below).

Suomi NPP VIIRS true-color RGB image and Aerosol Optical Depth product [click to enlarge]

Suomi NPP VIIRS true-color RGB image and Aerosol Optical Depth product [click to enlarge]

Widespread Smoke in the Pacific Northwest

GOES-16 data posted on this page are preliminary, non-operational and are undergoing testing

Dry weather over the Pacific Northwest (and over Idaho and Montana) has created an ideal environment lately for wildfires, and much of the region is shrouded in smoke from those fires as shown in the Suomi NPP True Color Imagery, above, from this site.  Note the red points that are Suomi-NPP-detected fires; they persist from day to day, and some grow in size during the course of the animation. GOES-16 Animations of True Color (in this case, the CIMSS Natural True Color product that is created using Bands 1, 2 and 3 (0.47 µm, 0.64 µm and 0.86 µm, respectively)), below, (also available here; a similar product from CIRA is available here), show the pall of smoke as well. Air Quality Alerts from the National Weather Service were widespread on 6 September.

CIMSS Natural True Color, every 15 minutes, from 1400-2130 UTC on 6 September 2017 (Click to animate)

GOES-16 has multiple channels and products that can view both the Smoke and the Fires that produce the smoke. In addition to the visible imagery, Fire Products, below, can characterize the Temperature, Power (in megawatts) and area (in square meters) of the fire detected by GOES-16.  On this day, clouds over the fires in Oregon mean that satellite detection is challenged, even though the by-product, smoke, is apparent.  Fires over Idaho are readily apparent however.  These fires were also detected by the 3.9 µm Shortwave Infrared channel on GOES-16, the traditional fire-detection channel (used in concert with 10.3 µm, the clean window channel).  Imagery at 1.6 µm and 2.2 µm imagery can also be used to highlight hot fires;  that will be the subject of a future blog post.

GOES-16 Fire Products: Fire Temperature, Fire Power and Fire Area, 2037 UTC on 6 September 2017 (Click to enlarge)

 

The mp4 animation, below, shows CIMSS Natural True Color over the Full Disk on 5 September 2017.  The Full Disk View allows a better visualization of how the smoke is moving (and underscores how widespread it is) — and it shows Hurricane Irma as well.

CIMSS Natural True Color, every 15 minutes, on 5 September 2017 (Click to animate)

 

NOAA creates many Smoke-related products, some of which are easily accessible at this link.