Category Archives: RealEarth Web Map Server

Cyclone Kelvin makes landfall in Australia

Himawari-8 Visible (0.64 µm, left) and Infrared Window (10.4 µm, right) images, with hourly surface plots at Broome [click to play Animated GIF | MP4 also available]

Himawari-8 Visible (0.64 µm, left) and Infrared Window (10.4 µm, right) images, with hourly surface plots at Broome, Australia [click to play Animated GIF | MP4 also available]

Himawari-8 Visible (0.64 µm) and Infrared Window (10.4 µm) images (above) showed Cyclone Kelvin as it made landfall in Western Australia as a Category 1 storm on 18 February 2018. Kelvin continued to intensify shortly after making landfall, with estimated winds of 80 gusting to 100 knots — and a distinct eye feature could be seen in the Visible and Infrared imagery (as well as Broome radar data).

A longer animation of Himawari-8 Infrared Window (10.4 µm) images (below) revealed a very large convective burst as Kelvin meandered near the coast early on 17 February — periodic cloud-top infrared brightness temperatures of -90 ºC or colder were seen. After making landfall, the eye structure eventually deteriorated by 18 UTC on 18 February.

Himawari-8 Infrared Window (10.4 µm) images, with hourly surface plots [click to play MP4 | Animated GIF also available]

Himawari-8 Infrared Window (10.4 µm) images, with hourly surface plots [click to play MP4 | Animated GIF also available]

The MIMIC-TC product (below) showed the development of Kelvin’s compact eye during the 17 February – 18 February period; the eye was well-defined around the time of landfall (2147 UTC image on 17 February), and persisted for at least 18 hours (1556 UTC image on 18 February) until rapidly dissipating by 21 UTC.

MIMIC-TC morphed microwave imagery [click to enlarge]

MIMIC-TC morphed microwave imagery [click to enlarge]

Himawari-8 Deep Layer Wind Shear values remained very low — generally 5 knots or less — prior to, during and after the landfall of Kelvin, which also contributed to the slow rate of weakening. In addition, an upward moisture flux from the warm/wet sandy soil of that region helped Kelvin to intensify after landfall; land surface friction was also small, since that portion of Northwest Australia is rather flat.

Himawari-8 Water Vapor images, with Deep Layer Wind Shear product [click to enlarge]

Himawari-8 Water Vapor images, with Deep Layer Wind Shear product [click to enlarge]

The eye of Cyclone Kelvin could also be seen in Terra MODIS and Suomi NPP VIIRS True-color Red-Green-Blue (RGB) images, viewed using RealEarth (below). The actual times of the Terra and Suomi NPP satellite overpasses were 0154 UTC and 0452 UTC on 18 February, respectively.

Terra MODIS and Suomi NPP VIIRS True-color RGB images [click to enlarge]

Terra MODIS and Suomi NPP VIIRS True-color RGB images [click to enlarge]

Large hail in Argentina

GOES-16

GOES-16 “Red” Visible (0.64 µm, top) and “Clean” Infrared Window (10.3 µm, bottom) images, with hourly surface reports (metric units) for Córdoba, Argentina [click to play animated GIF — MP4 also available]

GOES-16 (GOES-East) “Red” Visible (0.64 µm) and “Clean” Infrared Window (10.3 µm) images (above) showed the development of severe thunderstorms which produced very large hail in Córdoba, Argentina on 08 February 2018. Distinct above-anvil plumes were evident on the Visible imagery, with pulses of overshooting tops exhibiting Infrared brightness temperatures in the -70 to -80ºC range (black to white enhancement). The hail reportedly began around 1930 UTC or 4:30 PM local time.

The above-anvil plumes could also be seen in GOES-16 Near-Infrared “Snow/Ice” (1.61 µm) images (below).

GOES-16 Near-Infrared

GOES-16 Near-Infrared “Snow/Ice” (1.61 µm) images, with hourly surface reports (metric units) for Córdoba, Argentina [click to play animated GIF — MP4 also available]

An Aqua MODIS True-color Red-Green-Blue (RGB) image viewed using RealEarth (below) showed the thunderstorm just west of Córdoba around 1850 UTC.

Aqua MODIS True-color RGB image [click to enlarge]

Aqua MODIS True-color RGB image [click to enlarge]

According to the Worldview site, the coldest Aqua MODIS cloud-top infrared brightness temperature at that time was -78ºC (below).

Aqua MODIS True-color and Infrared Window (11.0 µm) images [click to enlarge]

Aqua MODIS True-color and Infrared Window (11.0 µm) images [click to enlarge]

A time series plot of surface observations at Córdoba (below) showed the warm temperatures and high dew points prior to the arrival of the thunderstorms; there were a number of hail reports between 19 UTC and 02 UTC (4 PM to 11 PM local time).

Time series of surface observations at Córdoba, Argentina [click to enlarge]

Time series of surface observations at Córdoba, Argentina [click to enlarge]

Eruption of Volcán de Fuego in Guatemala

GOES-16 Near-Infrared

GOES-16 Near-Infrared “Snow/Ice” (1.61 µm, top), Near-Infrared “Cloud Particle Size” (2.24 µm, middle) and Shortwave Infrared (3.9 µm, bottom) images [click to animate]

After a series of occasional weak emissions during the previous month, a small eruption of Volcán de Fuego began during the pre-dawn hours on 01 February 2018. The thermal anomaly or “hot spot” could be seen on GOES-16 (GOES-East) Near-Infrared “Snow/Ice” (1.61 µm), Near-Infrared “Cloud Particle Size” (2.24 µm) and Shortwave Infrared (3.9 µm) images (above). In terms of the two Near-Infrared bands, even though the 1.61 µm band has better spatial resolution (1 km at satellite sub-point), the 2-km resolution 2.24 µm band is spectrally located closer to the peak emitted radiance of very hot features such as active volcanoes or large fires.

Multi-spectral retrievals of Ash Cloud Height from the NOAA/CIMSS Volcanic Cloud Monitoring site (below) indicated that volcanic ash extended to altitudes in the 4-6 km range (yellow to green enhancement), with isolated 7 km pixels at 1315 UTC. The product also showed the effect of a burst of southwesterly winds just after 11 UTC, which began to transport some of the ash northeastward (as mentioned in the 1332 UTC advisory).

GOES-16 Ash Height product [click to animate]

GOES-16 Ash Height product [click to animate]

At 1624 UTC, a 30-meter resolution Landsat-8 False-color Red-Green-Blue (RGB) image viewed using RealEarth (below) showed the primary ash plume drifting to the west, with some lower-altitude ash spreading out northward and southward. A thermal anomaly was also evident at the summit of the volcano.

Landsat-8 False-color RGB image [click to enlarge]

Landsat-8 False-color RGB image [click to enlarge]

Pyrocumulonimbus cloud in Argentina

GOES-16 Visible (0.64 µm, top), Shortwave Infrared (3.9 µm, center) and Infrared Window (10.3 µm) images [click to play animation]

GOES-16 Visible (0.64 µm, top), Shortwave Infrared (3.9 µm, center) and Infrared Window (10.3 µm, bottom) images [click to play animation]

A large cluster of fires burning in central Argentina became hot enough to generate a brief pyrocumulonimbus (pyroCb) cloud on 29 January 2018; according to media reports, on that day there were winds of 55 km/hour (34 mph) and temperatures of 37 ºC (98.6 ºF) in the vicinity of these La Pampa province fires. GOES-16 (GOES-East) “Red” Visible (0.64 µm), Shortwave Infrared (3.9 µm) and “Clean” Infrared Window (10.3 µm) images (above; also available as an MP4 animation) showed the smoke plumes, fire thermal anomalies or “hot spots” (red pixels) and the cold cloud-top infrared brightness temperatures, respectively. The minimum 10.3 µm temperature was -32.6 ºC at 1745 UTC. Note the relatively warm (darker gray) appearance on the 3.9 µm image — this is a characteristic signature of pyroCb clouds tops, driven by the aerosol-induced shift toward smaller ice particles (which act as more efficient reflectors of incoming solar radiation).

An Aqua MODIS True-color Red-Green-Blue (RGB) image viewed using RealEarth (below) showed the dense lower-tropospheric smoke drifting southward and southeastward from the fire source region, as well as the narrow upper-tropospheric anvil of the pyroCb cloud. Suomi NPP VIIRS fire detection locations are plotted as red dots on the final zoomed-in image. The actual time of the Aqua satellite pass over Argentina was 1812 UTC.

Aqua MODIS True-color RGB image, with Suomi NPP VIIRS fire detection locations [click to enlarge]

Aqua MODIS True-color RGB image, with Suomi NPP VIIRS fire detection locations [click to enlarge]

According to Worldview the coldest MODIS Infrared Window (11.0 µm) cloud-top  brightness temperature was -41.2 ºC, thus surpassing the -40 ºC threshold that is generally accepted to classify it as a pyroCb. This is believed to be the first confirmed pyroCb event in South America.

Approximately 120 km north-northeast of the pyroCb cloud, rawinsonde data from Santa Rosa, Argentina (below) indicated that the -41 ºC cloud-top temperature corresponded to altitudes in the 10.8 to 11.6 km range. The air was very dry at that level in the upper troposphere, contributing to the rapid dissipation of the pyroCb cloud material as seen in GOES-16 imagery.

Plots of rawinsonde data from Santa Rosa, Argentina [click to enlarge]

Plots of rawinsonde data from Santa Rosa, Argentina [click to enlarge]

48-hour HYSPLIT forward trajectories originating from the center of the pyroCb cloud at altitudes of 7, 9 and 11 km (below) suggested that a rapid transport of smoke over the adjacent offshore waters of the Atlantic Ocean was likely at those levels.

HYSPLIT forward trajectories originating at altitudes of 7, 9 and 11 km [click to enlarge]

HYSPLIT forward trajectories originating at altitudes of 7, 9 and 11 km [click to enlarge]

On 30 January, Suomi NPP OMPS Aerosol Index values (below; courtesy of Colin Seftor, SSAI at NASA Goddard) were as high as 4.3 over the South Atlantic (at 41.81º South latitude, 53.22º West longitude, 17:31:34 UTC) — consistent with the HYSPLIT transport originating at 7 km.

Suomi NPP OMPS Aerosol Index on 30 January [click to enlarge]

Suomi NPP OMPS Aerosol Index on 30 January [click to enlarge]

Additional Suomi NPP VIIRS True-color and OMPS Aerosol Index images can be found on the OMPS Blog.

===== 01 February Update =====

This analysis of CALIPSO CALIOP data (courtesy of Mike Fromm, NRL) suggests that the upper-tropospheric smoke from this pyroCb event was transported as far as the eastern South Atlantic Ocean by 02 UTC on 01 February, having ascended to altitudes in the 9-10 km range.

Eruption of the Mayon Volcano in the Philippines

Himawari-8 False-color RGB images [click to animate]

Himawari-8 False-color RGB images [click to animate]

The first in a renewed series of eruptions of the Mayon Volcano in the Philippines began around 0450 UTC on 22 January 2018. As seen in Himawari-8 False-color Red-Green-Blue (RGB) images from the NOAA/CIMSS Volcanic Cloud Monitoring site (above), the ash cloud was transported to the northwest.

Multi-spectral retrievals of the Ash Cloud Height (below) indicated that the ash reached altitudes of at least 10 km (dark blue).

Himawari-8 Ash Cloud Height product [click to animate]

Himawari-8 Ash Cloud Height product [click to animate]

A plot of rawinsonde data from nearby Legaspi at 00 UTC on 22 January (below) indicated that the 10 km altitude corresponded to a pressure of 285 hPa.

Plot of rawinsonde data from Legaspi, Philippines [click to enlarge]

Plot of rawinsonde data from Legaspi, Philippines [click to enlarge]

A Suomi NPP VIIRS True-color RGB image from RealEarth (below) revealed some of the lower-altitude ash (shades of tan to brown) drifting toward the west at the satellite overpass time of 0507 UTC. Thermal anomalies — signatures of hot lava flows — are indicated by red dots.

Suomi NPP VIIRS True-color RGB image [click to enlarge]

Suomi NPP VIIRS True-color RGB image [click to enlarge]

Flooding in Southern California

1-minute GOES-16 Infrared Window (10.3 µm) images; with hourly reports of surface weather type plotted in yellow [click to play MP4 animation]

1-minute GOES-16 Infrared Window (10.3 µm) images; with hourly reports of surface weather type plotted in red [click to play MP4 animation]

An onshore flow of moisture (MIMIC TPW) in tandem with forcing for ascent with the approach of an upper-level low and a surface cold/occluded front brought heavy rainfall and some higher-elevation snowfall (NWS LOX/SGX | WPC) to much of Southern California on 09 January 2018. To help monitor the event, a GOES-16 (GOES-East) Mesoscale Sector was positioned over the region, providing images at 1-minute intervals. “Clean” Infrared Window (10.3 µm) images (above) showed the colder clouds associated with periods of moderate to heavy rainfall. Some of this precipitation fell over burn scar areas from wildfires that occurred in December 2017 — including the Thomas fire, which was the largest on record for the state of California — resulting in numerous mud/debris slides that caused at least 17 fatalities, destroyed/damaged hundreds of homes, and closed many streets and highways.

GOES-16 “Red” Visible (0.64 µm) images (below) showed some of the features which helped produce heavier rainfall and snowfall during the daylight hours on 09 January.

1-minute GOES-16

1-minute GOES-16 “Red” Visible (0.64 µm) images; with hourly reports of surface weather type plotted in red [click to play MP4 animation]

The circulation of the upper-level low was easily seen on GOES-16 Mid-level Water Vapor (6.9 µm) images (below).

1-minute GOES-16 Water Vapor (6.9 µm) images; with hourly reports of surface weather type plotted in red [click to play MP4 animation]

1-minute GOES-16 Water Vapor (6.9 µm) images; with hourly reports of surface weather type plotted in red [click to play MP4 animation]

===== 10 January Update =====

Suomi NPP VIIRS True-color and False-color RGB images [click to enlarge]

Suomi NPP VIIRS True-color and False-color RGB images [click to enlarge]

On the following day, a toggle between Suomi NPP VIIRS True-color and False-color Red-Green-Blue (RGB) images from RealEarth (above) showed (1) the large burn scar from the Thomas Fire (shades of reddish-brown), and (2) snow cover in the higher terrain (darker shades of cyan) on the False-color image. The True-color image revealed sediment from runoff flowing into the nearshore waters from Santa Barbara to Oxnard (shades of brown to light green).

A closer look at the Thomas Fire burn scar was provided by 30-meter resolution Landsat-8 False-color RGB imagery (below), which showed thin filaments of muddy sediment just offshore, as well as fresh snow cover (shades of cyan) along or immediately adjacent to the northeastern edge of the burn scar (in the Hines Peak area). On 10 January, the fire was listed as 92% contained (100% containment was declared on 12 January).

Landsat-8 False-color RGB image [click to enlarge]

Landsat-8 False-color RGB image [click to enlarge]

===== 11 January Update =====

Suomi NPP VIIRS True-color images on 10 January and 11 January [click to enlarge]

Suomi NPP VIIRS True-color images on 10 January and 11 January [click to enlarge]

A comparison of Suomi NPP VIIRS True-color RGB images on 10 January and 11 January (above) showed that sediment was flowing farther offshore from the Thomas Fire burn scar area.

Farther to the south, offshore sediment transport was also seen in the San Diego area (below).

Suomi NPP VIIRS True-color image on 11 January [click to enlarge]

Suomi NPP VIIRS True-color image on 11 January [click to enlarge]

Ice floes in Chesapeake Bay

Landsat-8 false-color RGB image [click to enlarge]

Landsat-8 false-color RGB image [click to enlarge]

In the wake of the explosive cyclogenesis off the East Coast of the US on 04 January 2018, very cold air began to spread across much of the eastern half of the Lower 48 states. Focusing on the Hampton Roads area of southeastern Virginia, satellite imagery began to show the formation of ice in the rivers and bays. On 06 January, a 30-meter resolution Landsat-8 false-color Red-Green-Blue (RGB) image viewed using RealEarth (above) revealed some of this ice — in particular, long narrow ice floes (snow and ice appear as shades of cyan) that likely emerged from the Back River (northeast of Hampton) and were drifting northward and southward just off the coast of the Virginia Peninsula.

On the following day (07 January), 250-meter resolution Terra MODIS true-color and false-color RGB images from the MODIS Today site (below) showed that a larger V-shaped ice floe was located just southeast of the Peninsula, with its vertex pointed toward the Hampton Roads Bridge-Tunnel (HRBT). Snow and ice also appear as shades of cyan in the MODIS false-color image.

Terra MODIS true-color and false-color RGB images [click to enlarge]

Terra MODIS true-color and false-color RGB images [click to enlarge]

07 January also happened to be the last full day of imagery to be broadcast by the GOES-13 satellite — a comparison of 1-minute Mesoscale Sector GOES-16 (GOES-East) Visible (0.64 µm) and 15-30 minute interval GOES-13 Visible (0.63 µm) images (below) showed that the V-shaped ice floe continued to drift southwestward toward the HRBT. However, it was difficult to tell whether the ice feature made it over and past the tunnel; even with the improved GOES-16 Visible spatial resolution (0.5 km at satellite sub-point, compared to 1.0 km for GOES-13) and the 1-minute rapid image scans, the ice floe became harder to track during the afternoon hours before high clouds began to overspread the region.

"GOES-16

GOES-16 Visible (0.64 µm, left) and GOES-13 Visible (0.63 µm, right) images, with hourly surface air temperatures (ºF) plotted in yellow [click to play MP4 animation]

However, a close examination of Suomi NPP VIIRS true-color and false-color images at 1826 UTC (below) indicated that some of the ice had indeed moved westward past Fort Monroe (on the far southeastern tip of the Peninsula) and over/past the HRBT.

Suomi NPP VIIRS true-color and false-color RGB images [click to enlarge]

Suomi NPP VIIRS true-color and false-color RGB images [click to enlarge]

On the topic of cold temperatures in southeastern Virginia, a new daily record low of -3 ºF was set at Richmond on the morning of 07 January, and at Norfolk new daily record low and record low maximum temperatures were set (10 ºF and 23 ºF, respectively).

Eastern US winter storm

GOES-16

GOES-16 “Red” Visible (0.64 µm, left) and Near-Infrared “Snow/Ice” (1.61 µm, right) images, with plots of hourly surface reports [click to play MP4 animation]

The initial impacts of a large Eastern US winter storm were seen in a comparison of GOES-16 (GOES-East) “Red” Visible (0.64 µm) and Near-Infrared “Snow/Ice” (1.61 µm) images (above) on 03 January 2018 — areas of southeastern Georgia received freezing rain and/or 1-6 inches of snowfall. As clouds began to dissipate, the resulting snow cover appeared bright on the Visible images (since fresh snow is highly reflective at the 0.64 µm wavelength), and darker shades of gray on the Near-Infrared images (since snow and ice are strong absorbers of radiation at the 1.61 µm wavelength). Note the brief appearance of a cloud plume streaming southward from the Hatch Nuclear Power Plant.

Earlier that morning, the Florida Panhandle also received snowfall (text | map), but the lighter accumulations there were insufficient to exhibit a good satellite signature.

In a toggle between Suomi NPP VIIRS true-color and false-color Red-Green-Blue (RGB) images from RealEarth (below), the deeper snow cover in Georgia appears as darker shades of cyan.

Suomi NPP VIIRS true-color and false-color images [click to enlarge]

Suomi NPP VIIRS true-color and false-color images [click to enlarge]

===== 04 January Update =====

Suomi NPP VIIRS Day/Night Band (0.7 µm) and Infrared Window (11.45 µm) images [click to enlarge]

Suomi NPP VIIRS Day/Night Band (0.7 µm) and Infrared Window (11.45 µm) images [click to enlarge]

A toggle between Suomi NPP VIIRS Day/Night Band (0.7 µm) and Infrared Window (11.45 µm) images at 0620 UTC (1:20 AM Eastern time) on 04 January (above; courtesy of William Straka, CIMSS) showed a nighttime view of the rapidly-intensifying storm when it had an estimated minimum central pressure of 972 hPa or 28.70″. Note the signature of snow cover — extending from southeastern Georgia across eastern portions of South Carolina and North Carolina — which is evident on the “visible image at night” Day/Night Band (made possible by ample illumination from the Moon, which was in the Waning Gibbous phase at 92% of Full). A full-resolution version of the Day/Night Band image is available here.

During the following daytime hours, 30-second interval Mesoscale Sector GOES-16 “Red” Visible (0.64 µm) images (below) showed the evolution of the low pressure center of circulation as it continued to rapidly intensify (surface analyses) off the US East Coast.

30-second GOES-16

30-second GOES-16 “Red” Visible (0.64 µm) images [click to play MP4 animation]

GOES-16

GOES-16 “Red” Visible (0.64 µm) images, with hourly surface weather type plotted in yellow [click to play MP4 animation]

A larger-scale view (using 5-minute CONUS sector data) of GOES-16 “Red” Visible (0.64 µm) images with hourly plots of surface weather (above) depicted the widespread precipitation associated with the storm. Similarly, plots of hourly wind gusts (below) portrayed the large wind field of the system. Some of the highest snowfall/ice accumulations and peak wind gusts are listed here and here.

GOES-16

GOES-16 “Red” Visible (0.64 µm) images, with hourly surface wind gusts plotted in yellow [click to play MP4 animation]

In the wake of the departing storm, the tropospheric column over Florida and the southeastern US was dry enough (3.7 mm or 0.15″ at Tallahassee FL and 4.0 mm or 0.16 ” at Charleston SC) to allow the GOES-16 Lower-level (7.3 µm) Water Vapor imagery (below) to detect the thermal contrast of surface land/water boundaries — portions of the coastline and a few of the larger inland lakes were evident.

"GOES-16

(7.3 µm, left), Mid-level (6.9 µm, center) and Upper-level (6.2 µm, right) images [click to play animation]” class=”size-medium” /> GOES-16 Lower-level (7.3 µm, left), Mid-level (6.9 µm, center) and Upper-level (6.2 µm, right) images [click to play animation]

A full-resolution Suomi NPP VIIRS true-color RGB image at 1738 UTC (below) revealed interesting storm features such its very large cloud shield and convection near the circulation center, as well as the swath of snow cover across parts of Georgia, South Carolina and North Carolina.

Suomi NPP VIIRS true-color RGB image [click to enlarge]

Suomi NPP VIIRS true-color RGB image [click to enlarge]

A toggle between the corresponding Suomi NPP VIIRS Visible (0.64 µm) and Snow/Ice RGB images (below) helped to highlight locations which received a significant accrual of ice from freezing rain– these areas show up as a darker shade of red on the Snow/Ice RGB image (along the southeastern edge of the swath of snow cover, which is a lighter shade of red). Notable ice accumulations included 0.50″ at Brunswick and Folkston GA, 0.25″ at Georgetown and Myrtle Beach SC, and 0.25″ at Kure Beach NC.

Suomi NPP VIIRS Visible (0.64 µm) and Snow/Ice RGB images, with surface station identifiers plotted in white [click to enlarge]

Suomi NPP VIIRS Visible (0.64 µm) and Snow/Ice RGB images, with surface station identifiers plotted in white [click to enlarge]

Finally, a 30-meter resolution Landsat-8 false-color RGB image viewed using RealEarth (below) showed the snow-covered Charleston, South Carolina area — areas with less dense trees and vegetation showed a more pronounced snow cover signature (shades of cyan). The Charleston International Airport remained closed, due to snow and ice-covered runways.

Landsat-8 false-color RGB image [click to enlarge]

Landsat-8 false-color RGB image [click to enlarge]

Additional imagery of this explosive cyclogenesis event can be found at this blog post.

Aircraft hole punch and cloud dissipation features over Illinois, Indiana and Ohio

Terra MODIS true-color and false-color RGB images [click to enlarge]

Terra MODIS True-color and False-color RGB images [click to enlarge]

A toggle between 250-meter resolution Terra MODIS True-color and False-color Red-Green-Blue (RGB) images from the MODIS Today site (above) revealed numerous aircraft “hole punch” and dissipation trail or “distrail” features over Illinois, Indiana and Ohio on 21 December 2017.  These cloud features were caused by aircraft that were either ascending or descending through a layer of cloud composed of supercooled water droplets — cooling from wake turbulence (reference) and/or particles from the jet engine exhaust acting as ice condensation nuclei causes the small supercooled water droplets to turn into larger ice crystals (many of which then fall from the cloud layer, creating “fall streak holes“). The ice crystal clouds appear as darker shades of cyan on the false-color image.

GOES-16 "Red" Visible (0.64 µm) and Near-Infrared "Snow/Ice" (1.61 µm) images over Illinois/Indiana [click to play MP4 animation]

GOES-16 “Red” Visible (0.64 µm) and Near-Infrared “Snow/Ice” (1.61 µm) images over Illinois/Indiana [click to play MP4 animation]

GOES-16 (GOES-East) “Red” Visible (0.64 µm) and Near-Infrared “Snow/Ice” (1.61 µm) images showed the hole punch and distrail features over Illinois/Indiana (above) and over Indiana/Ohio (below). The glaciated (ice crystal) hole punch and distrail clouds appeared dark gray on the Snow/Ice images (since ice is a strong absorber of radiation at the 1.61 µm wavelength).

GOES-16 "Red" Visible (0.64 µm) and Near-Infrared "Snow/Ice" (1.61 µm) images over Indiana/Ohio [click to play MP4 animation]

GOES-16 “Red” Visible (0.64 µm) and Near-Infrared “Snow/Ice” (1.61 µm) images over Indiana/Ohio [click to play MP4 animation]

RealEarth is used to display Suomi NPP VIIRS Visible (0.64 µm), Shortwave Infrared (3.9 µm), Near-Infrared (1.61 µm), True-color and False-color RGB images at 1841 UTC (below). O ne the Shortwave Infrared images, the hole punch and distrail features are colder (brighter white) than the surrounding supercooled water droplet cloud deck — since water droplet are effective absorbers of incoming solar radiation, such clouds appear warmer (darker gray) in 3.9 µm images.

Suomi NPP VIIRS

Suomi NPP VIIRS “Red” Visible (0.64 µm), Shortwave Infrared (3.9 µm), Near-Infrared “Snow/Ice” (1.61 µm), True-color and False-color RGB images [click to enlarge]

Aircraft hole punch and distrail cloud features over southern Lake Michigan

GOES-16

GOES-16 “Red” Visible (0.64 µm, top) and Near-Infrared “Snow/Ice” (1.61 µm. bottom) images, with surface station identifiers plotted in yellow [click to play MP4 animation]

GOES-16 (GOES-East) “Red” Visible (0.64 µm) and Near-Infrared “Snow/Ice” (1.61 µm) images (above) revealed a number of aircraft “hole punch clouds” and cloud dissipation or “distrail” features drifting eastward across southern Lake Michigan and adjacent states on 20 December 2017. These cloud features were caused by aircraft that were either ascending or descending through a layer of cloud composed of supercooled water droplets — cooling from wake turbulence (reference) and/or particles from the jet engine exhaust acting as ice condensation nuclei cause the small supercooled water droplets to turn into larger ice crystals (many of which then often fall from the cloud layer, creating “fall streak holes“). The darker gray appearance of the hole punch clouds on 1.61 µm images confirms that the features were composed of ice crystals (since ice is a strong absorber of radiation at that wavelength).

A good example of a hole punch cloud adjacent to a longer distrail feature was seen over far southeastern Minnesota and the Minnesota/Wisconsin border, using 250-meter resolution Aqua MODIS true-color and false-color Red-Green-Blue (RGB) images from the MODIS Today site (below). Glaciated (ice crystal) cloud features appeared as darker shades of cyan in the false-color image.

Aqua MODIS true-color and false-color RGB images [click to enlarge]

Aqua MODIS true-color and false-color RGB images [click to enlarge]

A very detailed view of a hole punch cloud over Lake Michigan was provided by 30-meter resolution Landsat-8 false-color imagery at 1635 UTC, viewed using RealEarth (below).

Landsat-8 false-color RGB image [click to enlarge]

Landsat-8 false-color RGB image [click to enlarge]

===== 21 December Update =====

Another example of numerous aircraft hole punch and distrail cloud features was seen on Terra MODIS true-color and false-color RGB images on 21 December. over northern Illinois and northern Indiana (below).

Terra MODIS true-color and false-color images [click to enlarge]

Terra MODIS true-color and false-color RGB images [click to enlarge]