Category Archives: Red-Green-Blue (RGB) images

Eruption of Mount Sinabung volcano

Himawari-8 RGB images [click to play animation]

Himawari-8 RGB images [click to play animation]

An explosive eruption of Mount Sinabung began at 0153 UTC on 19 February 2018. Himawari-8 False-color Red-Green-Blue (RGB) images from the NOAA/CIMSS Volcanic Cloud Monitoring site (above) showed the primary plume of high-altitude ash moving northwestward, with ash at lower altitudes spreading out to the south and southeast of the volcano.

Mutli-spectral retrievals of Ash Cloud Height (below) indicated that the explosive eruption injected volcanic ash to altitudes generally within the 12-18 km range, possibly reaching heights of 18-20 km. Advisories issued by the Darwin VAAC listed the ash height at 45,000 feet (13.7 km).

Himawari-8 Ash Height product [click to play animation]

Himawari-8 Ash Height product [click to play animation]

Ash Loading values (below) were also very high within the high-altitude portion of the plume.

Himawari-8 Ash Loading product [click to play animation]

Himawari-8 Ash Loading product [click to play animation]

The Ash Effective Radius product (below) indicated that very large particles were present within the plume immediately downwind of the eruption site.

Himawari-8 Ash Effective Radius product [click to play animation]

Himawari-8 Ash Effective Radius product [click to play animation]

In a comparison of Himawari-8 “Red” Visible (0.64 µm), Shortwave Infrared (3.9 µm) and “Clean” Infrared Window (10.4 µm) images (below), note the very pronounced warm thermal anomaly or “hot spot” (large cluster of red pixels) on the 0150 UTC image — Himawari-8 was actually scanning that location at 01:54:31 UTC, just after the 0153 UTC eruption. Prior to the main eruption, beginning at 0120 UTC a very narrow volcanic cloud — likely composed primarily of condensed steam — was seen streaming rapidly southward from the volcano summit.

Himawari-8

Himawari-8 “Red” Visible (0.64 µm, left), Shortwave Infrared (3.9 µm, center) and “Clean” Infrared Window (10.4 µm, right) images [click to play Animated GIF | MP4 also available]

The coldest Himawari-8 cloud-top infrared brightness temperature was -73 ºC at 0300 UTC, which roughly corresponded to an altitude of 15 km on the nearby WIMM Medan rawinsonde data at 00 UTC (below).

Medan, Indonesia rawinsonde data at 00 UTC on 19 February [click to enlarge]

Medan, Indonesia rawinsonde data at 00 UTC on 19 February [click to enlarge]

A Terra MODIS True-color RGB image viewed using RealEarth is shown below. The time of the Terra satellite overpass was 0410 UTC.

Terra MODIS True-color RGB image [click to enlarge]

Terra MODIS True-color RGB image [click to enlarge]

An animation of Himawari-8 True-color RGB images can be seen here.

Cyclone Kelvin makes landfall in Australia

Himawari-8 Visible (0.64 µm, left) and Infrared Window (10.4 µm, right) images, with hourly surface plots at Broome [click to play Animated GIF | MP4 also available]

Himawari-8 Visible (0.64 µm, left) and Infrared Window (10.4 µm, right) images, with hourly surface plots at Broome, Australia [click to play Animated GIF | MP4 also available]

Himawari-8 Visible (0.64 µm) and Infrared Window (10.4 µm) images (above) showed Cyclone Kelvin as it made landfall in Western Australia as a Category 1 storm on 18 February 2018. Kelvin continued to intensify shortly after making landfall, with estimated winds of 80 gusting to 100 knots — and a distinct eye feature could be seen in the Visible and Infrared imagery (as well as Broome radar data).

A longer animation of Himawari-8 Infrared Window (10.4 µm) images (below) revealed a very large convective burst as Kelvin meandered near the coast early on 17 February — periodic cloud-top infrared brightness temperatures of -90 ºC or colder were seen. After making landfall, the eye structure eventually deteriorated by 18 UTC on 18 February.

Himawari-8 Infrared Window (10.4 µm) images, with hourly surface plots [click to play MP4 | Animated GIF also available]

Himawari-8 Infrared Window (10.4 µm) images, with hourly surface plots [click to play MP4 | Animated GIF also available]

The MIMIC-TC product (below) showed the development of Kelvin’s compact eye during the 17 February – 18 February period; the eye was well-defined around the time of landfall (2147 UTC image on 17 February), and persisted for at least 18 hours (1556 UTC image on 18 February) until rapidly dissipating by 21 UTC.

MIMIC-TC morphed microwave imagery [click to enlarge]

MIMIC-TC morphed microwave imagery [click to enlarge]

Himawari-8 Deep Layer Wind Shear values remained very low — generally 5 knots or less — prior to, during and after the landfall of Kelvin, which also contributed to the slow rate of weakening. In addition, an upward moisture flux from the warm/wet sandy soil of that region helped Kelvin to intensify after landfall; land surface friction was also small, since that portion of Northwest Australia is rather flat.

Himawari-8 Water Vapor images, with Deep Layer Wind Shear product [click to enlarge]

Himawari-8 Water Vapor images, with Deep Layer Wind Shear product [click to enlarge]

The eye of Cyclone Kelvin could also be seen in Terra MODIS and Suomi NPP VIIRS True-color Red-Green-Blue (RGB) images, viewed using RealEarth (below). The actual times of the Terra and Suomi NPP satellite overpasses were 0154 UTC and 0452 UTC on 18 February, respectively.

Terra MODIS and Suomi NPP VIIRS True-color RGB images [click to enlarge]

Terra MODIS and Suomi NPP VIIRS True-color RGB images [click to enlarge]

Ice motion in the Great Lakes

GOES-16 "Red" Visible (0.64 µm) images, with hourly plots of surface wind barbs in cyan and wind gusts (kn0ts) in red (click to play Animated GIF)

GOES-16 “Red” Visible (0.64 µm) images, with hourly plots of surface wind barbs in cyan and wind gusts (knots) in red (click to play Animated GIF | MP4 also available)

GOES-16 “Red” Visible (0.64 µm) images showed ice motion in the western Great Lakes (above) and the central/eastern Great Lakes (below) on 14 February 2018. A flow of southwesterly winds at the surface was helping to move the lake ice toward the northeast. With increasing winds and a return of warmer air, the ice coverage of Lake Superior, Lake Michigan and Lake Huron had decreased slightly from their seasonal peaks a few days earlier — while the ice coverage for Lake Erie remained neared its seasonal peak. The total ice coverage for the Great Lakes as a whole was 57.9% on this day.

GOES-16

GOES-16 “Red” Visible (0.64 µm) images, with hourly plots of surface wind barbs in cyan and wind gusts (knots) in red (click to play Animated GIF | MP4 also available)

Closer views of southern Lake Michigan and southern Lake Huron are shown below. In Lake Huron, small ice floes can be seen breaking away from the land fast ice.

GOES-16

GOES-16 “Red” Visible (0.64 µm) images, with hourly plots of surface wind barbs in cyan and wind gusts (knots) in red (click to play Animated GIF | MP4 also available)

GOES-16

GOES-16 “Red” Visible (0.64 µm) images, with hourly plots of surface wind barbs in cyan and wind gusts (knots) in red (click to play Animated GIF | MP4 also available)

250-meter resolution Terra and Aqua MODIS True-color Red-Green-Blue (RGB) images from the MODIS Today site (below) provided more detailed views of the ice floes in southern Lake Michigan, southern Lake Huron and western Lake Erie. The Aqua satellite overpass was about 90 minutes later than that of Terra.

Terra and Aqua MODIS True-color RGB images of southern Lake Michigan [click to enlarge]

Terra and Aqua MODIS True-color RGB images of southern Lake Michigan [click to enlarge]

Terra and Aqua MODIS True-color RGB images of southern Lake Huron [click to enlarge]

Terra and Aqua MODIS True-color RGB images of southern Lake Huron [click to enlarge]

Terra and Aqua MODIS True-color RGB images of western Lake Erie [click to enlarge]

Terra and Aqua MODIS True-color RGB images of western Lake Erie [click to enlarge]

Large hail in Argentina

GOES-16

GOES-16 “Red” Visible (0.64 µm, top) and “Clean” Infrared Window (10.3 µm, bottom) images, with hourly surface reports (metric units) for Córdoba, Argentina [click to play animated GIF — MP4 also available]

GOES-16 (GOES-East) “Red” Visible (0.64 µm) and “Clean” Infrared Window (10.3 µm) images (above) showed the development of severe thunderstorms which produced very large hail in Córdoba, Argentina on 08 February 2018. Distinct above-anvil plumes were evident on the Visible imagery, with pulses of overshooting tops exhibiting Infrared brightness temperatures in the -70 to -80ºC range (black to white enhancement). The hail reportedly began around 1930 UTC or 4:30 PM local time.

The above-anvil plumes could also be seen in GOES-16 Near-Infrared “Snow/Ice” (1.61 µm) images (below).

GOES-16 Near-Infrared

GOES-16 Near-Infrared “Snow/Ice” (1.61 µm) images, with hourly surface reports (metric units) for Córdoba, Argentina [click to play animated GIF — MP4 also available]

An Aqua MODIS True-color Red-Green-Blue (RGB) image viewed using RealEarth (below) showed the thunderstorm just west of Córdoba around 1850 UTC.

Aqua MODIS True-color RGB image [click to enlarge]

Aqua MODIS True-color RGB image [click to enlarge]

According to the Worldview site, the coldest Aqua MODIS cloud-top infrared brightness temperature at that time was -78ºC (below).

Aqua MODIS True-color and Infrared Window (11.0 µm) images [click to enlarge]

Aqua MODIS True-color and Infrared Window (11.0 µm) images [click to enlarge]

A time series plot of surface observations at Córdoba (below) showed the warm temperatures and high dew points prior to the arrival of the thunderstorms; there were a number of hail reports between 19 UTC and 02 UTC (4 PM to 11 PM local time).

Time series of surface observations at Córdoba, Argentina [click to enlarge]

Time series of surface observations at Córdoba, Argentina [click to enlarge]

Ice in the western Great Lakes

GOES-16 "Red" Visible (0.64 µm) images, with plots of hourly surface reports [click to play animation]

GOES-16 “Red” Visible (0.64 µm) images, with plots of hourly surface reports [click to play animation]

After several days of cold temperatures, ice coverage in the western half of Lake Superior began to increase — and GOES-16 (GOES-East) “Red” Visible (0.64 µm) images (above) showed the motion of some of this lake ice (which was driven by a combination of surface winds and lake circulations) on 04 February 2018. That morning a number of locations in northern and northeastern Minnesota reported low temperatures in the -20 to -40 ºF range, with -43 ºF at Embarrass (the coldest location in the Lower 48 states).

With an overpass of the Landsat-8 satellite at 1646 UTC, a 30-meter resolution False-color Red-Green-Blue (RGB) image (below) provided a very detailed view of a portion of the Lake Superior ice. NOAA-GLERL analyzed the mean ice concentration of Lake Superior to be at 23.9% ; the Canadian Ice Service analyzed much of the new lake ice to have a concentration of 9/10ths to 10/10ths.

Landsat-8 False-color RGB image [click to enlarge]

Landsat-8 False-color RGB image [click to enlarge]

Magnified sections of the Landsat-8 RGB image swath are shown below, moving from northeast to southwest.

Landsat-8 False-color RGB image [click to enlarge]

Landsat-8 False-color RGB image [click to enlarge]

Landsat-8 False-color RGB image [click to enlarge]

Landsat-8 False-color RGB image [click to enlarge]

Landsat-8 False-color RGB image [click to enlarge]

Landsat-8 False-color RGB image [click to enlarge]

Landsat-8 False-color RGB image [click to enlarge]

Landsat-8 False-color RGB image [click to enlarge]

Moving to the south, a closer look at Green Bay in northeastern Wisconsin revealed a few small ice floes drifting from the north end of the bay into Lake Michigan (below).

GOES-16

GOES-16 “Red” Visible (0.64 µm) images, with plots of hourly surface reports [click to play animation]

Eruption of Volcán de Fuego in Guatemala

GOES-16 Near-Infrared

GOES-16 Near-Infrared “Snow/Ice” (1.61 µm, top), Near-Infrared “Cloud Particle Size” (2.24 µm, middle) and Shortwave Infrared (3.9 µm, bottom) images [click to animate]

After a series of occasional weak emissions during the previous month, a small eruption of Volcán de Fuego began during the pre-dawn hours on 01 February 2018. The thermal anomaly or “hot spot” could be seen on GOES-16 (GOES-East) Near-Infrared “Snow/Ice” (1.61 µm), Near-Infrared “Cloud Particle Size” (2.24 µm) and Shortwave Infrared (3.9 µm) images (above). In terms of the two Near-Infrared bands, even though the 1.61 µm band has better spatial resolution (1 km at satellite sub-point), the 2-km resolution 2.24 µm band is spectrally located closer to the peak emitted radiance of very hot features such as active volcanoes or large fires.

Multi-spectral retrievals of Ash Cloud Height from the NOAA/CIMSS Volcanic Cloud Monitoring site (below) indicated that volcanic ash extended to altitudes in the 4-6 km range (yellow to green enhancement), with isolated 7 km pixels at 1315 UTC. The product also showed the effect of a burst of southwesterly winds just after 11 UTC, which began to transport some of the ash northeastward (as mentioned in the 1332 UTC advisory).

GOES-16 Ash Height product [click to animate]

GOES-16 Ash Height product [click to animate]

At 1624 UTC, a 30-meter resolution Landsat-8 False-color Red-Green-Blue (RGB) image viewed using RealEarth (below) showed the primary ash plume drifting to the west, with some lower-altitude ash spreading out northward and southward. A thermal anomaly was also evident at the summit of the volcano.

Landsat-8 False-color RGB image [click to enlarge]

Landsat-8 False-color RGB image [click to enlarge]

Pyrocumulonimbus cloud in Argentina

GOES-16 Visible (0.64 µm, top), Shortwave Infrared (3.9 µm, center) and Infrared Window (10.3 µm) images [click to play animation]

GOES-16 Visible (0.64 µm, top), Shortwave Infrared (3.9 µm, center) and Infrared Window (10.3 µm, bottom) images [click to play animation]

A large cluster of fires burning in central Argentina became hot enough to generate a brief pyrocumulonimbus (pyroCb) cloud on 29 January 2018; according to media reports, on that day there were winds of 55 km/hour (34 mph) and temperatures of 37 ºC (98.6 ºF) in the vicinity of these La Pampa province fires. GOES-16 (GOES-East) “Red” Visible (0.64 µm), Shortwave Infrared (3.9 µm) and “Clean” Infrared Window (10.3 µm) images (above; also available as an MP4 animation) showed the smoke plumes, fire thermal anomalies or “hot spots” (red pixels) and the cold cloud-top infrared brightness temperatures, respectively. The minimum 10.3 µm temperature was -32.6 ºC at 1745 UTC. Note the relatively warm (darker gray) appearance on the 3.9 µm image — this is a characteristic signature of pyroCb clouds tops, driven by the aerosol-induced shift toward smaller ice particles (which act as more efficient reflectors of incoming solar radiation).

An Aqua MODIS True-color Red-Green-Blue (RGB) image viewed using RealEarth (below) showed the dense lower-tropospheric smoke drifting southward and southeastward from the fire source region, as well as the narrow upper-tropospheric anvil of the pyroCb cloud. Suomi NPP VIIRS fire detection locations are plotted as red dots on the final zoomed-in image. The actual time of the Aqua satellite pass over Argentina was 1812 UTC.

Aqua MODIS True-color RGB image, with Suomi NPP VIIRS fire detection locations [click to enlarge]

Aqua MODIS True-color RGB image, with Suomi NPP VIIRS fire detection locations [click to enlarge]

According to Worldview the coldest MODIS Infrared Window (11.0 µm) cloud-top  brightness temperature was -41.2 ºC, thus surpassing the -40 ºC threshold that is generally accepted to classify it as a pyroCb. This is believed to be the first confirmed pyroCb event in South America.

Approximately 120 km north-northeast of the pyroCb cloud, rawinsonde data from Santa Rosa, Argentina (below) indicated that the -41 ºC cloud-top temperature corresponded to altitudes in the 10.8 to 11.6 km range. The air was very dry at that level in the upper troposphere, contributing to the rapid dissipation of the pyroCb cloud material as seen in GOES-16 imagery.

Plots of rawinsonde data from Santa Rosa, Argentina [click to enlarge]

Plots of rawinsonde data from Santa Rosa, Argentina [click to enlarge]

48-hour HYSPLIT forward trajectories originating from the center of the pyroCb cloud at altitudes of 7, 9 and 11 km (below) suggested that a rapid transport of smoke over the adjacent offshore waters of the Atlantic Ocean was likely at those levels.

HYSPLIT forward trajectories originating at altitudes of 7, 9 and 11 km [click to enlarge]

HYSPLIT forward trajectories originating at altitudes of 7, 9 and 11 km [click to enlarge]

On 30 January, Suomi NPP OMPS Aerosol Index values (below; courtesy of Colin Seftor, SSAI at NASA Goddard) were as high as 4.3 over the South Atlantic (at 41.81º South latitude, 53.22º West longitude, 17:31:34 UTC) — consistent with the HYSPLIT transport originating at 7 km.

Suomi NPP OMPS Aerosol Index on 30 January [click to enlarge]

Suomi NPP OMPS Aerosol Index on 30 January [click to enlarge]

Additional Suomi NPP VIIRS True-color and OMPS Aerosol Index images can be found on the OMPS Blog.

===== 01 February Update =====

This analysis of CALIPSO CALIOP data (courtesy of Mike Fromm, NRL) suggests that the upper-tropospheric smoke from this pyroCb event was transported as far as the eastern South Atlantic Ocean by 02 UTC on 01 February, having ascended to altitudes in the 9-10 km range.

Eruption of the Mayon Volcano in the Philippines

Himawari-8 False-color RGB images [click to animate]

Himawari-8 False-color RGB images [click to animate]

The first in a renewed series of eruptions of the Mayon Volcano in the Philippines began around 0450 UTC on 22 January 2018. As seen in Himawari-8 False-color Red-Green-Blue (RGB) images from the NOAA/CIMSS Volcanic Cloud Monitoring site (above), the ash cloud was transported to the northwest.

Multi-spectral retrievals of the Ash Cloud Height (below) indicated that the ash reached altitudes of at least 10 km (dark blue).

Himawari-8 Ash Cloud Height product [click to animate]

Himawari-8 Ash Cloud Height product [click to animate]

A plot of rawinsonde data from nearby Legaspi at 00 UTC on 22 January (below) indicated that the 10 km altitude corresponded to a pressure of 285 hPa.

Plot of rawinsonde data from Legaspi, Philippines [click to enlarge]

Plot of rawinsonde data from Legaspi, Philippines [click to enlarge]

A Suomi NPP VIIRS True-color RGB image from RealEarth (below) revealed some of the lower-altitude ash (shades of tan to brown) drifting toward the west at the satellite overpass time of 0507 UTC. Thermal anomalies — signatures of hot lava flows — are indicated by red dots.

Suomi NPP VIIRS True-color RGB image [click to enlarge]

Suomi NPP VIIRS True-color RGB image [click to enlarge]

Ice dam in Lake Erie

GOES-16

GOES-16 “Red” Visible (0.64 µm) images, with hourly surface wind barbs plotted in yellow and wind gusts (knots) plotted in cyan [click to play animation]

Thanks to Dave Zaff (NWS Buffalo) for the email alerting us to an ice dam that had formed across the eastern portion of Lake Erie on 19 January 2018 — GOES-16 (GOES-East) “Red” Visible (0.64 µm) images (above) showed that the northeastward drift of ice floes was effectively being blocked by this ice dam feature.

A toggle between 250-meter resolution Terra MODIS True-color and False-color Red-Green-Blue (RGB) images from the MODIS Today site (below) provided a more detailed view of the Lake Erie ice dam and upwind drift ice at 1615 UTC. Snow and ice appear as shades of cyan in the False-color image, in contrast to supercooled water droplet clouds which are shades of white.

Terra MODIS True-color and False-color RGB images [click to enlarge]

Terra MODIS True-color and False-color RGB images; red arrows denote the location of the ice dam [click to enlarge]

The Terra MODIS Visible (0.65 µm) image with an overlay of RTMA surface winds (below) showed the southwesterly flow across the long axis of the lake.

Terra MODIS Visible (0.65 µm) image with surface METAR reports and RTMA surface winds [click to enlarge]

Terra MODIS Visible (0.65 µm) image with surface METAR reports and RTMA surface winds [click to enlarge]

A toggle between 1607 UTC Terra MODIS and 1757 UTC Suomi NPP VIIRS Visible images (below) showed the motion of the lake drift ice during that time period.

Terra MODIS and Suomi NPP VIIRS Visible images, with METAR surface reports [click to enlarge]

Terra MODIS and Suomi NPP VIIRS Visible images, with METAR surface reports [click to enlarge]

Flooding in Southern California

1-minute GOES-16 Infrared Window (10.3 µm) images; with hourly reports of surface weather type plotted in yellow [click to play MP4 animation]

1-minute GOES-16 Infrared Window (10.3 µm) images; with hourly reports of surface weather type plotted in red [click to play MP4 animation]

An onshore flow of moisture (MIMIC TPW) in tandem with forcing for ascent with the approach of an upper-level low and a surface cold/occluded front brought heavy rainfall and some higher-elevation snowfall (NWS LOX/SGX | WPC) to much of Southern California on 09 January 2018. To help monitor the event, a GOES-16 (GOES-East) Mesoscale Sector was positioned over the region, providing images at 1-minute intervals. “Clean” Infrared Window (10.3 µm) images (above) showed the colder clouds associated with periods of moderate to heavy rainfall. Some of this precipitation fell over burn scar areas from wildfires that occurred in December 2017 — including the Thomas fire, which was the largest on record for the state of California — resulting in numerous mud/debris slides that caused at least 17 fatalities, destroyed/damaged hundreds of homes, and closed many streets and highways.

GOES-16 “Red” Visible (0.64 µm) images (below) showed some of the features which helped produce heavier rainfall and snowfall during the daylight hours on 09 January.

1-minute GOES-16

1-minute GOES-16 “Red” Visible (0.64 µm) images; with hourly reports of surface weather type plotted in red [click to play MP4 animation]

The circulation of the upper-level low was easily seen on GOES-16 Mid-level Water Vapor (6.9 µm) images (below).

1-minute GOES-16 Water Vapor (6.9 µm) images; with hourly reports of surface weather type plotted in red [click to play MP4 animation]

1-minute GOES-16 Water Vapor (6.9 µm) images; with hourly reports of surface weather type plotted in red [click to play MP4 animation]

===== 10 January Update =====

Suomi NPP VIIRS True-color and False-color RGB images [click to enlarge]

Suomi NPP VIIRS True-color and False-color RGB images [click to enlarge]

On the following day, a toggle between Suomi NPP VIIRS True-color and False-color Red-Green-Blue (RGB) images from RealEarth (above) showed (1) the large burn scar from the Thomas Fire (shades of reddish-brown), and (2) snow cover in the higher terrain (darker shades of cyan) on the False-color image. The True-color image revealed sediment from runoff flowing into the nearshore waters from Santa Barbara to Oxnard (shades of brown to light green).

A closer look at the Thomas Fire burn scar was provided by 30-meter resolution Landsat-8 False-color RGB imagery (below), which showed thin filaments of muddy sediment just offshore, as well as fresh snow cover (shades of cyan) along or immediately adjacent to the northeastern edge of the burn scar (in the Hines Peak area). On 10 January, the fire was listed as 92% contained (100% containment was declared on 12 January).

Landsat-8 False-color RGB image [click to enlarge]

Landsat-8 False-color RGB image [click to enlarge]

===== 11 January Update =====

Suomi NPP VIIRS True-color images on 10 January and 11 January [click to enlarge]

Suomi NPP VIIRS True-color images on 10 January and 11 January [click to enlarge]

A comparison of Suomi NPP VIIRS True-color RGB images on 10 January and 11 January (above) showed that sediment was flowing farther offshore from the Thomas Fire burn scar area.

Farther to the south, offshore sediment transport was also seen in the San Diego area (below).

Suomi NPP VIIRS True-color image on 11 January [click to enlarge]

Suomi NPP VIIRS True-color image on 11 January [click to enlarge]